Note the advantages of index notation be:
if a Lagragion has all indices contracted, its invariant euler Lorentz trasstornations.
eng. $\partial_{\mu} \Phi \partial_{V} I$ is not Lorentz-incariant, but ∂_{μ} I $\partial^{\mu} \Phi$ is.

- U(1) symmetry: $\mathbb{I} \rightarrow e^{i Q \alpha} \Phi_{\text {I }}$. We also require $\Phi^{+} \rightarrow e^{-i a \alpha} \Phi^{+}$ So that $\Phi^{+}=\left(\Phi^{*}\right)^{\top}$ before and aster transto-nation
\Rightarrow any terms that have on equal number of I ad Φ^{+}ore invariant, as long as α is a constant.

$$
\begin{aligned}
& \partial_{\mu} \Phi^{+} \partial_{\nu} \Phi \longrightarrow\left(e^{-i \theta \alpha} \partial_{\mu} \Phi^{+}\right)\left(e^{i \theta / \alpha} \partial_{\nu} \Phi\right)=\partial_{\mu} \Phi^{+} \partial_{\nu} \Phi \\
& (\underline{I}+\Phi)^{2}=\left(e^{-i g / \alpha} \Phi e^{i g / \alpha} \Phi\right)^{2}=(\underline{\underline{I}+I})^{2}, c t c
\end{aligned}
$$

Just like with Lorentz/Poincoré, we can consider infinitesimal tronstomatios:

$$
e^{i \alpha \alpha}=1+i Q \alpha+\cdots \text {, so } \underline{\underline{E}} \rightarrow(1+i \alpha \alpha) \underline{\text { or }} \delta \Phi \underline{I}=i \alpha \alpha \Phi
$$

This is a convenient calculational trick, so letter apply it

$$
\delta\left(\Phi^{+} \Phi\right)=\left(\delta \Phi^{+}\right) \underline{\Phi}+\underline{\Phi}^{+}(\delta \mathbb{I})=\left(-i \alpha \propto \underline{\Phi}^{+}\right) \underline{\underline{I}}+\underline{I}^{+}(+i \alpha \times \underline{I})=0
$$

ne "variation operate" δ
distributes over products
If $\delta(\ldots)=0$, that term is invariant under the symmetry.

- Su(2) Symmetry: I $\rightarrow e^{i \alpha^{a} \sigma^{a} / 2}$ I. Recall he Pauli matrices:

$$
\sigma^{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \sigma^{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \sigma^{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

For real parameters $\alpha^{a}(a=1,2,3), \frac{i \alpha^{2} \sigma^{2}}{2}=\frac{i}{2}\left(\begin{array}{cc}\alpha^{3} & \alpha^{\prime}-i \alpha^{2} \\ \alpha^{1}+i \alpha 2 & -\alpha^{3}\end{array}\right) \equiv i X \quad \in \operatorname{en}(2)$

$$
M \equiv e^{i x}=1+i x+\frac{(i x)^{2}}{2!}+\cdots \quad \in \operatorname{SU}(2)
$$

If X is Hermitian, M is unitary (HW)

Why Su(2) instead of $u(2)$?
Suppose we diagonalize M so let $M=\prod_{i} \lambda_{i}$ (product of eigevales)

$$
\log (\operatorname{det} M)=\log \left(\prod_{i} \lambda_{i}\right)=\sum_{i} \log \lambda_{i}=\operatorname{Tr}(\log n)
$$

But Tr and dit are both basis-indepeleat so the hold for any M, in particular $M=e^{i x}$
If $\operatorname{Tr}(x)=0$, hen $\operatorname{Tr}(\log M)=\operatorname{Tr}(i x)=0$, so $\log (\operatorname{det} n)=0$, $\operatorname{det} M=1$
\Rightarrow traceless, Hermitian x exponentiate to unitary matrices M with determinant 1 ,

Here, Pauli matrices on 2×2, so bey exporentiate to the group su(2) (indeed, they are the hie algebra of Such), ie. The set of infinitesimal transformations)
Back to Lagrangian: again, any terms with an equal number of Φ and Φ^{+}are invariant.
Proof: $\delta \Phi=\frac{i \alpha^{a} \sigma^{a}}{2} \Phi, \delta \Phi^{+}=\left(\frac{i \alpha^{a} \sigma^{a}}{2} \Phi\right)^{+}=\Phi^{+}\left(\frac{-i \alpha^{a} \sigma^{a}}{2}\right)$
(σ^{n} are Hermitian)

$$
\begin{aligned}
\delta\left(\Phi^{+} \Phi\right)=\left(\delta \Phi^{+}\right) \Phi+\Phi^{+}(\delta \Psi) & =\Phi^{+}\left(\frac{-i \alpha^{a} \sigma^{a}}{2}\right) \Phi+\Phi^{+}\left(\frac{i \alpha^{a} \sigma^{a}}{2}\right) \Phi \\
& =\Phi^{+}\left(\frac{-i \alpha^{a} \sigma^{2}+i \alpha a / \sigma^{a}}{2}\right) \Phi \\
& =0
\end{aligned}
$$

What does $\delta \mathbb{I}$ do to be fuels in I? Write out some examples:

$$
\begin{aligned}
& \alpha=(1,0,0) \quad \delta \mathbb{E}=\frac{i \sigma^{\prime}}{2} \mathbb{E}=\left(\begin{array}{cc}
0 & \frac{i}{2} \\
\frac{i}{2} & 0
\end{array}\right)\binom{\phi_{1}+i \phi_{2}}{\varphi_{1}+i \varphi_{2}}=\binom{-\frac{\varphi_{2}}{2}+\frac{i \varphi_{1}}{2}}{-\frac{\varphi_{2}}{2}+\frac{i \varphi_{1}}{2}} \\
& i, e, \delta \phi_{1}=-\frac{\varphi_{2}}{2}, \delta \phi_{2}=\frac{\varphi_{1}}{2}, \delta \varphi_{1}=-\frac{\phi_{2}}{2}, \delta \varphi_{2}=\frac{\phi_{1}}{2}
\end{aligned}
$$

mixes fields among one another (ie. "rearranges one labels" on Field operators)

Gauge invariance and spin-1

Recall our scalar Lagrangian from last time:

$$
\mathcal{L}[\Phi]=\partial_{\mu} \Phi^{+} \partial^{n} \Phi-m^{2} \Phi^{+} \Phi-\lambda\left(\Phi^{+} \Phi\right)^{2}
$$

We san that $\delta \Phi=i Q \alpha \Phi$ was a symmetry. What if we let $\alpha=\alpha\left(x^{-}\right)$ depend on spucetre position? This is a local transformation because it's a different action at each point, in catrast to global which is the save everywhere.
The spacetime dependence doesn't affect the second and third terms, which remain invariant, but it does chare the first are:

$$
\begin{aligned}
\delta\left(\partial_{\mu} \Phi^{+} \partial^{n} \tilde{\Psi}\right) & =\partial_{\mu} \delta \Phi^{+} \partial^{\mu} \Phi+\partial_{\mu} \Phi^{+} \partial^{\mu}(\delta \Phi) \\
& =\partial_{\mu}\left(-i Q \alpha(x) \Phi^{+}\right) \partial^{\mu} \Phi+\partial_{\mu} \Phi^{+} \partial^{\mu}(i Q \alpha(x) \Phi) \\
& =-i Q \partial_{\mu} \alpha \Phi^{+} \partial^{\mu} \Phi+i Q \partial^{\mu} \alpha \partial_{\mu} \Phi^{+} \Phi
\end{aligned}
$$

Not invariant armure!
We con fix this with a trick: sump ont all instances of ∂_{N} with $D_{m} \equiv \partial_{\mu}-i g Q A_{\mu}(x)$ (covariant derivative) where g is called a coupling content We define A_{μ} to have the trantormation rule $A_{m} \rightarrow A_{\mu}+\frac{1}{g} \partial_{m} \alpha$ tor both finite and infinitesimal
Then $D_{\mu} \Phi=\partial_{\mu} \Phi-i g Q A_{\mu} \Phi$ transforms as

$$
\begin{aligned}
D_{m} \Phi & \rightarrow \partial_{m}\left(e^{i \alpha \alpha} \Phi\right)-i g Q\left(A_{m}+\frac{1}{g} \partial_{\mu} \alpha\right) e^{i Q \alpha} \Phi \\
& =i Q \partial_{\mu} \alpha e^{i \alpha \alpha} \Phi+e^{i \alpha \alpha} \partial_{m} \Phi-i g Q A_{n} e^{i Q \alpha} \Phi-i Q \partial \alpha \alpha e^{i \alpha \alpha} \Phi \\
& =e^{i \alpha \alpha}\left(\partial_{m} \Phi-i g Q A_{m} \Phi\right)=e^{i \alpha \alpha} D_{m} \Phi
\end{aligned}
$$

Transformation of A_{n} cancels extra term form derivative of local symmetry parameter

$$
\Rightarrow D_{\mu} \Phi^{+} D^{n} \Phi \rightarrow\left(e^{-i \alpha \alpha} D_{M} \Phi^{+}\right)\left(e^{i \alpha \alpha} D^{\mu} \Phi\right)=D_{\mu} \Phi^{+} D^{\mu} \Phi
$$

invariant under local symmetry

So, we con promote a global symurety I a $e^{i a x} \Phi$ to a bal symmetry $\Phi \rightarrow e^{i ब \alpha(x)} \Phi$, at the cost of introducing another field A_{m} which has its own non-homogereous tronstornation rule $A_{\mu} \rightarrow A_{\mu}+\frac{1}{g} \partial_{\mu} \alpha$.

Why in the world could we do this?

- Turns out this is the correct way to incorporate interactions with spin-1 fields: An will be the photon, and Q is the the electric charge. (The coupling constant is $g=\sqrt{4 \pi \alpha}$ where $\alpha \simeq 1 / 3>$ is the Fine-structure constant you saw in QM.)
- In fact, this traaformatton rule for A_{m} is required for a consistent, unitary theory of a massless spin-1 particle: invariance under this local transformation is known as gauge invariance.
Let's put I aside for now and just consider what form the Lagrangian for A_{m} must take.
- Lorentz invariance: A_{μ} is a Lorentz vector, so $A_{\mu}(x) \rightarrow \Lambda_{\mu}^{v} A_{v}\left(\Lambda^{-1} x\right)$. So the "principle of contracted indices" holds: $A_{\mu} A^{\prime \prime}$ is Loretz-invariant, as is $\left(\partial_{\mu} A_{v}\right)\left(\partial^{\mu} A^{v}\right)$, eta.
'Gauge invariance: we watt \mathcal{L} to be invariant under $A_{\mu} \rightarrow A_{\mu}+\frac{1}{g} \partial_{n} \alpha$ Try writing down a mass term:

$$
\begin{aligned}
\delta\left(\frac{1}{2} m^{2} A_{m} A^{m}\right) & =\frac{1}{2} m^{2}\left(\delta A_{m} A^{m}+A_{\mu} \delta A^{n}\right) \\
& =\frac{m^{2}}{9} \partial_{m} \times A^{m} \neq 0
\end{aligned}
$$

Surprise! A mas term is not allowed by gauge suraiance.
What about terms with derivatives? Something like $\partial_{m} A_{v}$ will pick up $\partial_{\mu} \partial_{v} \alpha$. Con cancel this with a comparsath, term $\partial_{v} \partial_{\mu} \alpha$, which comes from $\partial_{v} A_{m}$. This leads to $\mathcal{L}_{A}=-\frac{1}{4}\left(\partial_{\mu} A_{\nu}-\partial_{v} A_{\mu}\right)\left(\partial^{\sim} A^{\nu}-\partial^{\nu} A^{\sim}\right)$ convational Frees, field streagh tensor

With $A_{m}=(\phi, \vec{A})$, the electromagnetic potentials, you will find that \mathcal{L} is none otter than Ne Maxwell Lagrangian, $\frac{1}{2}\left(\vec{E}^{2}-\vec{B}^{2}\right)$.

But the photon has 2 polarizations, ie, 2 independent components of $A m$, which is a 4-vector. How do we get rid of the 2 extraneous components? Two-step process:

1. Note that A^{0} has no time derivatives: $\partial_{0} A_{0}$ never appears in Lapraspian, So its equation of motion doesnit involve time. Therefore A_{0} is not a propagating degree of freedom: this follows immediately, from writs> 〈[Fmv]. can solve for A^{0} in terms of $\vec{A} \Rightarrow 3$ components left,
2. Choose a gauge, for example $\vec{\nabla} \cdot \vec{A}=0$. Solve for one component if \vec{A} in terms of k other two, and whats left are he tho propagating degrees of freedom, whose equations of motion are $\square A^{(1,2)}=0$.

The comettry is fairly straightforward as above, but not Lorentz invariance: under a lorentz transformation, A^{0} mixes with $\vec{A}, \vec{\nabla} \cdot \vec{A}=0$ is not preserved, etc.

Repeat the above analysis using unitary rep-esatations of the Lorentz group.
A 4 -vector A_{μ} must hare some Hilbert space representation $\left|A_{\mu}\right\rangle$, So we can write a state $|\psi\rangle$ as a linear combination of the componats:

$$
|\psi\rangle=c_{0}\left|A_{0}\right\rangle+c_{1}\left|A_{1}\right\rangle+c_{2}\left|A_{2}\right\rangle+c_{1}\left|A_{3}\right\rangle
$$

This stalk must have positive norm:

$$
\left.\langle\psi \mid \psi\rangle=\left|c_{0}\right|^{2}+\left|c_{1}\right|^{2}+\left|c_{2}\right|^{2}+\left|c_{3}\right|^{2}\right\rangle 0 .
$$

But if the components of An change under a Lorentz transtormetion, we can chase re norm, which is bad; the lorentz transformation entries are not unitary!

