Intro to group theory and So $(3,1)$
Observations (mary!) tell us physics is invariant win respect to Lorentz transformations. Therefore, ow goal is to describe elementary particles in a Lorentz-invoriant way.

An elementary particle is an irreducible represutation of The Poincare group - a semidicet product of the Lorentz group and the group of spacetime translations classified by its two Casimir inveriants, mass and spin. If the particle is charged, it is an irreducible representation of an additional internal symmetry, global or gauged

Over the next 3 week, we will learn what all these no rds mean.

Group, a collection G of objects Λ with on a associative multiplication race satisting
a) idutity', $I \Lambda=\Lambda I=\Lambda$ for any $\Lambda \in G$ and some specific $I \in G$
6) inuese: for any $\Lambda \in 0$, there exists Λ^{-1} in 6 such that $\Lambda \Lambda^{-1}=\Lambda^{-1} \Lambda=I$
c) closure: if $\Lambda_{1}, \Lambda_{2} \in G$, then $\Lambda_{1} \Lambda_{2} \in G$.

Notice, multiplication is not recessarim commutative: $\Lambda_{1} \Lambda_{2} \nsim \Lambda_{2} \Lambda_{1}$ in geneal

Representation: a map $G \rightarrow M_{a t_{n \times n}}$. Elements of $G \mathrm{can}$ then act on vectors in the vector space \mathbb{R}^{n} by matrix multiplication

Claim: Lorentz trastomations form a group, which we call
So $(3,1)$
Two mas to see this:

1) explicit calculation (compose fur boosts and see you can get another boost, eta)
2) be more abstract and clever

Define $S O(3,1)$ as the set of $4 \times 4 \mathrm{ceal}$ matrices 1 satisfying $\Lambda^{\top} \eta \Lambda=\eta$, with $\eta=\left(\begin{array}{ll}1 & \\ -1 & \\ & -1 \\ & \\ & \end{array}\right.$
Let's take an example to reify that this makes sense: [in-closs exercise]
$\Lambda_{x}=\left(\begin{array}{cccc}V & V B & 0 & 0 \\ V A & V & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)=\Lambda_{x}^{T}$. Multiplication by η on the cf multiplies rows by diagonal clements of η, so

$$
\left.\begin{array}{l}
\Lambda^{\top}(\eta \Lambda)=\left(\begin{array}{cccc}
\gamma & V \beta & 0 & 0 \\
V \beta & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
\gamma & V \beta & 0 & 0 \\
-\gamma \beta & -\gamma & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)=\left(\begin{array}{ccc}
\gamma^{2}\left(1-\beta^{2}\right) & 0 & 0 \\
0 & 0 \\
0 & -\gamma^{2}\left(1-\beta^{2}\right) & 0 \\
0 \\
0 & 0 & -1 \\
0 & 0 & 0
\end{array}\right)-1
\end{array}\right)
$$

and since $\gamma^{2}=\frac{1}{1-\beta^{2}}$, the RHS is $\left(\begin{array}{lll}1 & & \\ & -1 & \\ & & -1 \\ & & -1\end{array}\right)=\eta$.
Verify group properties from the definition:

- Identity. take $I=\mathbb{1}_{4 \times 4}$. Then $I^{\top} \eta I=\eta$, so $I \in S 0(3,1)$
- Inverse: the matrix inverse Λ^{-1} is an inverse to 1 as long as $\Lambda^{-1} \in S O(3,1)$, so we need to show $\left(\Lambda^{-1}\right)^{\top} \eta \Lambda^{-1}=\eta$. Start with inverting lefining relationship: $\left(\Lambda^{\top} \eta \Lambda\right)^{-1}=\eta^{-1}$

$$
\Rightarrow \Lambda^{-1} \eta\left(\Lambda^{\top}\right)^{-1}=\eta \text { since } y^{-1}=\eta \text {. }
$$

Wont $\left(\Lambda^{-1}\right)^{\text {T }}$ on left, so left-multipls both sides $6 y \eta n$ and right-maltiply by $\eta \Lambda^{-1}$:

$$
\left(\Lambda^{\top}\right)^{-1}=\left(\Lambda^{-1}\right)^{\top}
$$

- Closure: [HW]

These 4×4 matrices are also a representation of the group: Since they were used to define the group, we call it n de defining representation. It acts on 4-vectors x^{v} as $A^{n} x^{v}$.
What about other representations?

- Trivial representation: All elements of So 3,1) map to re number 1. This is the "do-nothing" representation and acts on scalars (numbers)
- What about acting on 2 -component vectors? 3-componet?

To do this systematically, we reed the concept of Lie algebras. These are another mathematical collection of objects obtained fran a group by looking at gray elements infinitesimally close to the identity.
Lets try writing $\Lambda=I+\in X$ and expand to first ode in t.

$$
\eta=(I+\epsilon x)^{\top} \eta(I+\epsilon x)=I \xi I+\epsilon\left(x^{\top} \eta+\eta x\right)+\theta\left(\epsilon^{2}\right)
$$

$\Rightarrow X^{\top} \eta=-\eta X$ defines Lie algebra so $(3,1)$
Up to multiplication by \geqslant, this looks like the condition for an antisymmetric 4×4 matrix, which has $\frac{4.3}{2}=6$ independent parameters, Thus the dimension of $20(3,1)$ (and $50(3,1)$) is 6 .

Unlike SO (3,1), $s O(3,1)$ does not have a multiplication rule.
It is, however, a vector space: if $x, y \in s o(3,1)$, then $a x+b y \in s o(3,1)$ for any real numbers a, b.
It has one additional ingredient, called the Lie bracket:
if $x, y \in \operatorname{so}(3,1)$, then $[x, y] \equiv x y-y x \in \mathbb{D}(3,1)$

$$
\text { Proof: } \begin{aligned}
([x, y])^{\top} \eta & \equiv(x y-y x)^{\top} \eta \\
& =y^{\top} x^{\top} \eta-x^{\top} y^{\top} \eta \\
& =y^{\top}(-\eta x)-x^{\top}(-\eta y) \\
& =\eta(y x-x y) \\
& =-\eta[x, y]
\end{aligned}
$$

Since taking brackets keeps us in the Lie algebra, we con choose a basis T^{i} and wite $\left[T^{i}, T^{j}\right]=f^{i j k} T^{k}$, wee e fijk are called structure constants, and the whole equation is a commutation relation.

For so(3,1), it's easiest to split he buss into infinitesimal boosts and infinitesimal rotations, ad to allow ourselves complex coefficients
Let $\vec{J} \equiv\left(J_{x}, J_{y}, J_{z}\right)$ be infinitesimal rotations around x, y, ad z axes respectively. Ex, $J_{x}=i\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0\end{array}\right) \quad[H W]$
$\vec{K} \equiv\left(k_{x}, k_{y}, k_{z}\right)$ are infindkrimal boosts abe y $x, y, 2$

$$
E_{x} \cdot K_{x}=i\left(\begin{array}{cccc}
0 & -1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Commutation relations: $\left.\underset{l}{\left[J_{i}, J_{j}\right]}=i \epsilon_{i j k} J_{k},\left[K_{i}, K_{j}\right]=-i \epsilon_{i j k}\right)_{k},\left(J_{i}, k_{j}\right]=i \epsilon_{i j k} K_{k}$ look familiar? two boosts give a rotariban [HW]

The fact that J and K get mixed with each other is arrosing. But un have one more trick up ow sheri, define a new basis

$$
\vec{J}^{+}=\frac{\vec{j}+i \vec{k}}{2}, \vec{j}=\frac{\vec{j}-i \vec{k}}{2}
$$

In this baucis the commutation relations are

$$
\left[J_{i}^{+}, J_{j}^{+}\right]=i \epsilon_{i j k} J_{k}^{+},\left[J_{i}^{-}, J_{j}^{-}\right]=i \epsilon_{i j k} J_{k}^{-}, \quad\left[J_{i}^{+}, J_{j}^{-}\right]=0
$$

Two identical copies of the same Lie algebra which don't mix!
So repessentation theory of so $(3,1)$ boils down to representation theory of J^{+}and J^{-}

But you already know the assur from quantum mechanics!
Id rep: $J: \equiv \sigma_{i}$, Pauli matrices (spin $-\frac{1}{2}$)
Id rep. $A_{i} \equiv$ infinitesimal $3 d$ rotation, $($ spin -1$)$
using raising and lowering operators, can have any half-intercer spin representation of dimension $2 j+1$
\Rightarrow Pick a halk-intege j labeling J^{-}and another half-integer; 'for J^{+}, and this defines a rep. of the Lorentz group $\left(j, j^{\prime}\right)$ of dimension $(2 j+1)(2 j+1)$. Some examples:

this is all we will reed to describe on - Standard Model

