Intro to group theory and So(3,1)

multiplication

Over le next 3 weeks we will lear what all trese words mean.

inverting defining relationship:
$$(\Lambda^{T} \mathcal{Y} \Lambda)^{-1} = \mathcal{Y}^{-1}$$

=> $\Lambda^{-1} \mathcal{Y} (\Lambda^{T})^{-1} = \mathcal{Y}$ since $\mathcal{Y}^{-1} = \mathcal{Y}$.

These 4x4 matrices are also a representation of the group: since they nere used to define the group, we call it the defining representation. It acts on 4-vectors x' as M'v x''. What about other representations?

 Trivial representation. All elements of So(3,1) map to Ne number 1. This is the "do-nothing" representation and acts on scalars (numbers)

What about acting a \sum -component vectors? 3 component? To do this systematically, we need the concept of Lie algebras. These are another mathematical collection of objects obtained from a group by looking at gray elements infinitesimally close to the identity. Let's try writing $\Lambda = I + E \times$ and expand to first order in E. $\eta = (I + E \times)^T \eta (I + E \times) = I \eta I + E (X^T \eta + \eta X) + \Theta(E^{\circ})$ $= \sum_{i=1}^{T} \frac{X^T \eta}{X} = -\eta X$ defines Lie algebra $2\sigma(3,1)$ Up to multiplication by η , this lasts like the condition for an antisymetric $A \times A$ matrix, which has $\frac{q \cdot 3}{2} = G$ independent parameters. Thus the dimension of $2\sigma(3,1)$ (and SO(3,1)) is G.

Unlike
$$SO(3,1)$$
, $SO(3,1)$ does not have a multiplication rule.
It is, however, a vector space: if $X, Y \in SO(3,1)$, then
 $a X + 6 Y \in SO(3,1)$ for any real numbers $a, 6$.
It has one additional ingredient, called the Lie bracket:
 $i F X, Y \in SO(3,1)$, then $[X, Y] = XY - YX \in SO(3,1)$
 $ProoF: ([X,Y])^T g = (XY - YX)^T g$
 $= Y^T X^T g - X^T Y^T g$
 $= Y^T (-gX) - X^T (-gY)$
 $= g(YX - XY)$
 $= -g[X,Y]$

Since taking brackets keeps us in the Lie algebra, we can choose a basis T^{i} and mite $(T^{i}, T^{i}] = f^{ijk}T^{k}$, where f^{ijk} are called structure constants, and the whole equation is a commutation relation. For $2\sigma(3,1)$, it's easiest to split the busis into infinitesime (boosts and infinitesimal rotations, and to allow ourselves complex coefficients Let $J = (J_{x}, J_{y}, J_{z})$ be infinitesimal rotations around x, y and z axes respectively. Ex. $J_{x} = i \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ [HW] $K = (K_{x}, K_{y}, K_{z})$ are infinitesimal boosts along $x_{i}y_{i}z$

(ommutation relations. [Ji, Jj]=iEijkJn, [K:, Kj]=-iEijhJk, [Ji, K;]=iEikKk look familia? two boosts give a rotation [HW]