
Classifications
Last time

,
we showed that W

"

is a Casimir operator for

the Poincaré group . It is Lorentz- invariant, so for a nae

particle , we can evaluate in a Frame where the momentum

eigenvector is km:(no
,
0,01

,

which gives P'= n' and WE -n'J -J
.

Recall from the second lecture that II Jt , II J
- ik
2-

⇒ J=J++J
-

Reps of Lorentz group are labeled by half- integer spins
j , , in , so this is like adding spins in Qm ! I can hare

spins j -- lj
,

- id
,

b-rid +1
,
. .
- jitjr

,
with J

-

= jlj + 1)

But W
'

is a Casimir operator so it only takes of value on

each irreducible representation, which one?

Some easy cases : (o, o ) rep. has j,=ju= 0 so j = 0 : these are

sppwtiies ( scalars)

( tr , o ) or ( o, tr ) reps . have j , =L and ji- O o- vice-versa ! again
,

only one possible value of j , j =L , so these are

spin-tzpa-tiesmorei-terest.rs:

( I , t) rep . has j , : Jr -- I , so j = I 0
.
In QFT

,
this will

describe gpi particles , but we will need an additional constraint

in the equations of motion to project out the j=o component.

- -
- -

- -
-
-
-

What about noises? PEO ,
so we can't go to a Frane

where K :(no, 0,01 . The best we can do is to take k°= k and

pick a direction since Ñ1=k° : take k^=(40,0
,
K) .



Can show that Ñ generates the set of transformations ②
Which leave k^ fixed ( this is known as the littlegroup) .
This is clear Fo- n -10 since J generates rotations, which leave
the zeroth component alone and doit affect 2=8 .

For m=0
,
things are more subtle . Clearly rotations in the

✗ y
-plane preserve Ñ=kZ , so W

,
1k> = Walk>=0. But there

is actually a combination of a boost and a rotation that

also preserves
K ? Note that W~P^= 0 ⇒ kcwo +Wilk> =o

,

so Wolk ) = -Walk>. Can also show [Wo
,
W
} ] 1k> =0

.
[Hw]

Therefore
,
WYK> =/(Wo )

"
- (MT) / K) = 0, so eigenvalues of

W
-

alone aren't enough to tell us about spin .

If we raise an index
,
W°=W? so W^= XP

"

Fo- sone t.

Consider Wo = It ;;,eo Mii ph = Eoii ,M
" P" = + I - Ñ = ✗ Po

.

Since Po = IF/ for massless particles, solve Fo- f :

✗ = J;¥-,= I. Ñ . This is a new spin quantum number

called helicity : projection of spin along direction of motion .
It is Lorentz- invariant for massless particles ! J

-Ñ=J
,
is

quantized in half- integers
,

therefore so is t
. Examples :

( o
,
o ) rep : 4=0 so F-0 ⇒ spin -0.

(1×0) or (o, E) reps : F- IF so 4--1=1 , and ✗ = ± 'z . ✗ so means

"

spin-up along direction of motion ,
" which we call right-handed . Fo- m=o,

this property is invariant under boosts .

(1-2,1) rep : ✗ = -1,01×4
,
or + I => spin -1, but 1=0 states are mph>sical .

Compared to m >0
,
there is an extra

✗ = 0 state which we will have to get
rid of with gaIana .



Ls
Unitary representations and Lagrangian
-

We have seen how to classify representations of the Poincaré

group by mass and spin . We now want to write down equations
of motion for elementary particles, which are invariant under

Poincaré transformations and obey the rules of quantum mechanics.

We could start with the Schrodinger equation,

it ¥+114T> = tilt, t>

but there are two problems :
- time is treated separately from space : tis a variable but I is

an operator. This is explicitly Lot Lorentz invariant-

- we can't describe particle creation ! E. g. in e.
*e- → rr

,

an electron and a positron are destroyed and two photos

are created
. In non - relativistic QM

,
conservation of probability

forbids this
.

The solution to both these problems is (perhaps not obviously )

quaÉid5. a collection of quantum operator at each point

in spacetime which evolve in the Heisenberg picture as

§ (✗m) =
eiÑt if ( o, E) e-

i # +
← he -c

,

I is just a label, zot an operato-

The Hilbert space basis is states of fixed particle number
,

and the field operators 0^1×4 create particles at F- Ct, E) .

Relativistic invariance is guaranteed by ensuring that it Ibuilt
out of § and other fields ) transforms appropriately under Poincaré.
We will bake this in from the beginning by constructing tagging

,

Poincaré- invariant functionals of quantum fields, from which we

can derive equatioÉÑ Euler-Lagrange

equations. In this course
,
we will deal almost exclusively with

the fields I rather than the Hilbert space they act on ) so we will

drop the hats on ¢.


