Massive spin- 1 Fields
As we saw, a mass tern for a vector field is not gauge invariant. However, there are several massive spin-1 particles in nature, which are either composite particles (the $\rho$ meson, for example) or which acquire a mas through the Hings mechanism (the $W$ and $Z$ gauge bosons). So, we should understand what the: Lagrangiuns should look like without assuming any gauge invariance conditions.

Luckily, the story is still quite simple. We still reed to get rid of 1 extraneous degree of freedom, and this will restrict the form of the Lagrangian.
We wart a Lagrangian whose equations of notion will viced $\left(\square+m^{2}\right) A_{n}=0$ in oder to satisfy the relativistic dispersion $p^{2}=n^{2}$. So we can have quadratic terms with 0 or 2 derivatives. The most geneal such Lagrangian is

$$
\mathcal{L}=\frac{a}{2} A^{n} \square A_{\mu}+\frac{b}{2} A^{m} \partial_{\mu} \partial^{v} A_{v}+\frac{1}{2} m^{2} A^{n} A_{\mu} \text { win } a, b, m
$$ arbiters coefficients, (Note that $[\alpha]=4$ if $[A]=1$, $a$ and 6 are dimensionless, ad $[m]=1$ )

The equations of motion are $[H W]$

$$
a \square A_{\mu}+b \partial_{\mu} \partial^{v} A_{v}+m^{2} A_{\mu}=0 .
$$

Take $\partial^{m}$ of this to set

$$
\left((a+6) \square+n^{2}\right)\left(\partial^{m} A_{n}\right)=0
$$

We are on the right track if we can enforce $\partial^{\wedge} A_{m}=O^{\prime}$ ' this is a scalar (ie. spin-0) constraint so it projects out $j=0$ as desired. To do this, take $a=1, b=-1$;

$$
\begin{aligned}
\mathcal{L} & =\frac{1}{2} A^{n} \square A_{n}-\frac{1}{2} A^{n} \partial_{n} \partial_{v} A_{v}+\frac{1}{2} n^{2} A^{n} A_{n} \\
& =-\frac{1}{2}\left(\partial^{v} A^{n} \partial_{v} A_{\mu}-\partial^{v} A^{n} \partial_{n} A_{v}\right)+\frac{1}{2} n^{2} A^{n} A_{n} \quad \text { (integrating bs puts) } \\
& =-\frac{1}{4}\left(\partial_{n} A_{v}-\partial_{v} A_{\mu}\right)\left(\partial^{n} A^{v}-\partial^{v} A^{\sim}\right)+\frac{1}{2} n^{2} A^{n} A_{n} \quad \text { (rearranging) }
\end{aligned}
$$

$$
=-\frac{1}{4} F_{\mu v} F^{\mu v}+\frac{1}{2} n^{2} A^{\sim} A_{\mu} \Leftarrow \operatorname{Proca} \text { (massive spin-1) }
$$ Lagrangian

The field stergth Fro just appeared without having to invoke gouge invariance! The equations of notion are now

$$
\left(\square+m^{2}\right) A_{\mu}=0 \text { and } \partial^{m} A_{m}=0 \text {. }
$$

We can now find the 3 linearls-independent polvization vectors as before, but now in a frame where $p^{m}=(n, 0,0,0)$ Since the Poincare Casimi- $p^{2}=m^{2}$.
In foxier space, have $p^{2}=n^{2}$ and $p \cdot \epsilon=0$. So ca take $\epsilon_{m}^{\prime}=(0,1,0,0), \epsilon_{m}^{2}=(0,0,1,0)$, and $\epsilon_{m}^{2}=(0,0,0,1)$. These Satisfy $\epsilon^{\infty}, \epsilon=-1$ as did the massless polvizations, and they are all physical.
In a boosted frame with $p^{2}=\left(E, 0,0, p_{2}\right) \quad\left(p_{2}^{2}=E^{2}-m^{2}\right)$, we have

$$
\epsilon_{n}^{1}=(0,1,0,0), \quad \epsilon_{m}^{2}=(0,0,1,0), \quad \epsilon_{r}^{2}=\left(\frac{p_{2}}{m}, 0,0, \frac{E}{m}\right) .
$$

The third polarization is called longitudinal because it has a spatial component along the direction of notion.
Note that for ultra-relativistic energies $E \gg$,

$$
\epsilon_{n}^{L} \rightarrow \frac{E}{n}(1,0,0,1)
$$

This will cause problems in QFT, and is why massive spin-1 must either be composite or cerise from a tigons mechanism.

Spin - $\frac{1}{2}$
Of the Lorentz ceps we foul in week 2, weave written down Lagrangian for $(0,0)$ and $\left(\frac{1}{2}, \frac{1}{2}\right)$. Now well finish the $j 06$ with $\left(\frac{1}{2}, 0\right)$ and $\left(0, \frac{1}{2}\right)$.
Recall $\vec{\jmath}^{+}=\frac{\vec{j}+i \vec{k}}{2}$ ard $\vec{\jmath}=\frac{\vec{\jmath}-i \vec{k}}{2}$ formed su(2) algebras

$$
\left(\frac{1}{2}, 0\right): \vec{J}=\frac{1}{2} \vec{\sigma}, \vec{\jmath}=0 \quad \Rightarrow \vec{J}=\frac{1}{2} \vec{\sigma}, k=\frac{i}{2} \vec{\sigma}
$$

These act on two-comporent objects we will call left-handed spinous: $\psi_{L} \rightarrow e^{\frac{1}{2}(-i \vec{\theta} \cdot \sigma-\vec{\beta} \cdot \vec{\theta})} \psi_{L}$, where $\vec{\theta}$ parancterizes a rotation and $\vec{\beta}$ a boost.
NOTE! OW sign Convention for $\theta$ differs from Schwartz, because ow sign yields rotations consistent with the right-hand rule. So if youre following along in schwartz Ch. 10, take $\theta \rightarrow-\theta$ in his formulas. Note also the transformation of $\psi_{L}$ is not unitary. As with spin -1, we will use momentum-dependert polarizations (ie. spino-s) to fix this.
Infinitesimally $l_{1}, \delta \psi_{L}=\frac{1}{2}\left(-i \theta_{j}-B j\right) \sigma_{j} \psi_{L}$.
Similarly, $\left(0, \frac{1}{2}\right): \vec{\jmath}=0, \vec{\jmath}+\frac{1}{2} \vec{\sigma} \Rightarrow \vec{\jmath}=\frac{1}{2} \vec{\sigma}, \vec{k}=-\frac{i}{2} \vec{\sigma}$
(Same behavior under rotations, apposite mere boors)
This acts on right-hanted spinari. $\psi_{R} \rightarrow e^{\frac{1}{2}(-i \vec{\theta} \cdot \vec{\sigma}+\vec{B} \cdot \vec{\sigma})} \psi_{R}$

$$
\delta \psi_{R}=\frac{1}{2}\left(-i \theta_{j}+\beta j\right) \sigma_{j} \psi_{R}
$$

Take Hermitic conjugates:

$$
\left.\begin{array}{l}
\delta \psi_{L}^{+}=\frac{1}{2}\left(i \theta_{j}-\beta_{j}\right) \psi_{L}^{+} \sigma_{j} \\
\delta \psi_{R}^{+}=\frac{1}{2}\left(i \theta_{j}+\beta_{j}\right) \psi_{R}^{+} \sigma_{j}
\end{array}\right\} \text { remember } \sigma_{j}^{+}=\sigma_{j}
$$

How do we write down a Lorentz-inumiat Lagrangian? So for, so Lorentz indices are present to contract with e.a. $\partial_{\mu} \psi_{L}$.

Con try just multiplying spinors, eq. $\psi_{R}^{+} \psi_{R}$, but th's is not Lorentz invariant!

$$
\begin{aligned}
\delta\left(\psi_{R}^{+} \psi_{R}\right) & =\frac{1}{2}\left(i \theta_{j}+\beta_{j}\right) \psi_{R}^{+} \sigma_{j} \psi_{R}+\frac{1}{2} \psi_{R}^{+}\left(-i \theta_{j}+\beta_{j}\right) \sigma_{j} \psi_{R} \\
& =\beta_{j} \psi_{R}^{+} \sigma_{j} \psi_{R} \neq 0
\end{aligned}
$$

On the other hand the product of a left-haded and risht-handed spinor is invariant:

$$
\begin{aligned}
\delta\left(\psi_{L}^{+} \psi_{R}\right) & =\frac{1}{2}\left(i \theta_{j}-\beta_{j}\right) \psi_{L}+\sigma_{j} \psi_{R}+\frac{1}{2} \psi_{l}^{+}\left(-i \theta_{j}+\beta_{j}\right) \sigma_{j} \psi_{R} \\
& =0
\end{aligned}
$$

This is nt Hermitian, so add its Hermitian conjugate.

Conclusion: without derivatives, only a product of $\psi_{L}$ ad $\psi_{R}$ is loretz-invaiat. But just this term alone gives equations of motion $\psi_{L}=\psi_{R}=0$, which is very boring.
Consider $\psi_{R}^{+} \sigma_{i} \psi_{R}$.

$$
\begin{aligned}
& \delta\left(\psi_{R}{ }^{+} \sigma_{i} \psi_{R}\right)=\frac{1}{2}\left(i \theta_{j}+\rho_{j}\right) \psi_{k}{ }^{+} \sigma_{j} \sigma_{i} \psi_{k}+\frac{1}{2}\left(-i \theta_{j}+\mu_{j}\right) \psi_{R}{ }^{+} \sigma_{i} \sigma_{j} \psi_{R} \\
& =\frac{\beta_{j}}{2} \psi_{R}{ }_{\text {articomuntaf. }}^{\left\{\sigma_{i}, \sigma_{i}\right\}} \psi_{R}-\frac{i \theta_{j}}{2} \psi_{R}^{+}[\underbrace{\left.\sigma_{i}, \sigma_{j}\right]}_{\text {commntetor }} \psi_{R} \\
& =2 \delta_{i j} \quad=2 i \epsilon_{i j k} \sigma_{k} \\
& =\beta_{i} \psi_{R}^{+} \psi_{R}+\epsilon_{i j k} \theta_{j} \psi_{R}^{+} \sigma_{k} \psi_{R}
\end{aligned}
$$

Let's dethe $\sigma^{\mu}=(\mathbb{1}, \tilde{v})$. Claim: $\psi_{R}{ }^{+} \sigma^{\mu} \psi_{R} \equiv\left(\psi_{R}{ }^{+} \psi_{R}, \psi_{R}{ }^{+} \sigma_{i} \psi_{R}\right)$ has precisely, the Lorentz transformation properties of a 4 -vector $V^{m} \equiv\left(v^{0}, \vec{v}\right)$ :

$$
\begin{aligned}
& \delta v^{0}=\vec{\beta} \cdot \vec{V} \\
& \left.\delta \vec{v}=\vec{\beta} v^{0}+\vec{\theta} \times \vec{v} \quad \text { you did this in } \mid+w 1\right)
\end{aligned}
$$

CAUTION: $\sigma^{m}$ is NOT a 4-vector. It is just a collection of 4 matrices. However, be notation and the previous calculation make it clear that $i \psi_{R}^{+} \sigma^{\mu} \partial_{\mu} \psi_{R}$ is Loretz-invmiant (factor of $i$ makes his term Hermitian)
Similarly $y, \vec{\sigma}^{\mu} \equiv(\mathbb{1},-\vec{\sigma})$ is Loreatz-invariant when sandwiched befucen $\psi_{L}$ and $\psi_{L}^{+}$
$\Rightarrow \alpha=i \psi_{R}^{+} \sigma^{\mu} \partial_{\mu} \psi_{R}+i \psi_{L}{ }^{-} \bar{\sigma}^{\mu} \partial_{\mu} \psi_{L}-m\left(\psi_{R}{ }^{+} \psi_{L}+\psi_{L}^{+} \psi_{R}\right)$ is he Lascasian
for a left-handel and a right-harled spin- $\frac{1}{2}$ particle coupled with a mass term. Note there is only are derivative, so $[\psi]=\frac{3}{2}$
Equations of notion: trent $\psi_{n}$ ad $\psi_{R}^{+}$as independent, so e.orm. for $\psi_{n}^{+}, \psi_{L}^{+}$ae

$$
\left.\begin{array}{l}
i \sigma^{m} \partial_{m} \psi_{R}-m \psi_{L}=0 \\
i \bar{\sigma}^{\mu} \partial_{m} \psi_{L}-m \psi_{R}=0
\end{array}\right\} \text { Dirac equation }
$$

We will show shot that both $\psi_{L}$ and $\psi_{R}$ satisfy Klein-Go-dan $e^{\eta}$, so indeed, $m$ is acting like a mass. Before that, though let's consider internal symmetries.
$\psi_{R}$ and $\psi_{L}$ live in differat representations of Loratz group, so con trastoon different y under internal symmetries. Suppose $\psi_{L} \rightarrow e^{i Q, \alpha} \psi_{L}$ ad $\psi_{k} \rightarrow e^{i \alpha_{2} \alpha} \psi_{R}$. Then kinetic terns are invariant, but not mass terns!

$$
\psi_{R}^{+} \psi_{L} \rightarrow e^{i\left(\alpha_{1}-\alpha_{2}\right) \alpha} \psi_{R}^{+} \psi_{L}
$$

This fact determines an enormous amount of the structure of the SM.
Ignoring nos terns for now, we con see that i $\psi_{L, R}^{+}(-)^{m} \partial_{\mu} \psi_{L, R}$ are invariant under any globul U(1) or SU(N) transtornctions, under which $\psi^{+}$and $\psi$ tronturm opposites.
To promote these to local symmetries, just replace
$\partial_{\mu} \rightarrow D_{\mu} \equiv \partial_{\mu}-i g Q A_{\mu}$ or $D_{\mu} \equiv \partial_{\mu}-i g T^{a} A_{\mu}^{a}$ as for scalars.
$\Rightarrow$ interaction between spin- $\frac{1}{2}$ ardspin-1, e.g. electron-photon.

If $\psi_{L}$ and $\psi_{R}$ have the same symmetries, for $m \neq 0$ it is convenient to combine then ir to a 4-component object $\psi=\binom{\psi_{L}}{\psi_{R}}$, called a Dirac spinor. If we define

$$
\bar{\psi} \equiv \psi^{+} \gamma^{0}=\left(\begin{array}{lll}
\psi_{R}^{+} & \psi_{L}^{+}
\end{array}\right) \text {where } \gamma^{0}=\left(\begin{array}{cc}
0_{2 \times 2} & n_{2 \times 2} \\
n_{2 \times 2} & 0_{2 \times 2}
\end{array}\right)
$$

we can write the Lagrangian more simply as
$\mathcal{L}=\bar{\psi}\left(i \gamma^{m} D_{\mu}-n\right) \psi=0$ where $n \equiv n \times \mathbb{1}_{4 \times 4}$
whee $\gamma^{n}=\left(\begin{array}{cc}0 & \sigma^{m} \\ \sigma^{n} & 0\end{array}\right)$. Recall from HW 2 that $S^{n v}=\frac{i}{4}\left[\gamma^{\sim}, \gamma^{v}\right]$ satisfied the commutation relations for the lorentz group, but they were block-diagonal so this is a reducible representation obtained by combining $\psi_{R}$ and $\psi_{L}$. The equation of motion is easily obtained from $\frac{\partial c}{\partial \bar{\psi}}=0$.'

$$
\left(i r^{n} D_{\mu}-n\right) 4=0
$$

Setting $D_{m}=\partial_{n}$ (i.e. ignoring the coupling to the gauze field), con stow that $\psi$ satisfies the Klein-Go-don equ. by acting with (irv$\partial_{v}+m$ ) on left:

$$
\begin{aligned}
O=\left(i \gamma^{v} \partial_{v}+n\right)\left(i \gamma^{n} \partial_{n}-n\right) \psi & =\left(-\gamma^{v} \gamma^{m} \partial_{v} \partial_{\mu}-m^{2}\right) \psi \\
\left(\text { kill minus signs, use } \partial_{n} \partial_{v}=\partial_{v} \partial_{n}\right): & =\left(\frac{1}{2}\left\{\gamma^{m}, \gamma^{v}\right\} \partial_{n} \partial_{v}+m^{2}\right) \psi \\
\left\{\gamma^{n}, \gamma^{v}\right) \equiv \gamma^{n} \gamma^{v}+\gamma^{v} \gamma^{n}=2 \eta^{n} & =\left(\eta^{n v} \partial_{n} \partial_{v}+n^{2}\right) \psi \\
(\text { (clifford algebra) } \quad & =\left(\partial_{n} \partial^{n}+n^{2}\right) \psi
\end{aligned}
$$

Convenient notation: contracting with $r$ denoted by a slash, ice. $\gamma^{\mu} \partial_{\mu} \equiv \varnothing$
To obtain equation of motion for $\Psi$, integrate derivative term by pats:

