$$
\alpha=-i\left(D_{m} \bar{\psi}\right) \gamma^{m} \psi-m \bar{\psi}
$$

$\frac{\partial f}{\partial \psi}=0 \Rightarrow-i D_{m} \bar{\psi} r^{m}-m \bar{\psi}=0$, or in a more convenient notation, $\bar{\psi}(-i \overleftarrow{\phi}-m)=O$ ($\stackrel{\mathscr{D}}{ }$ is a reminder that derivative acts on the left, before r^{n})

Nether's Theorem
Extremely powerful tool in QFT; Symmetries \leftrightarrow conservation laws. An example: the statement of conservation of charge can be expressed in $E+M$ as $\frac{\partial \rho}{\partial t}=\vec{\nabla} \cdot \vec{J}$, or in relativistic notation, $\partial_{\mu} j^{n}=0$ for the 4 -current $j^{n} \equiv(\rho, \vec{\jmath})$.
We argued that the gauge fired coupling to ψ could describe electron- photon interactions, so we should be able to build a current operator out of $\bar{\psi}$ which is conserved when ψ satisfies its equation of notion. Looking at the Lagrangian, we find

$$
\begin{aligned}
\alpha=i \bar{\psi} \varnothing \psi-n \bar{\psi} \psi= & i \bar{\psi}\left(\partial_{\mu}-i g Q A_{m}\right) \gamma^{m} \psi-m \bar{\psi} \psi \\
&)-A_{\mu}(\underbrace{-g Q \bar{\psi} \gamma^{m} \psi}_{J^{m}})
\end{aligned}
$$

Check conservation: $\partial_{\mu}\left(-g Q \bar{\psi} \gamma^{m} \psi\right)=-g Q \bar{\psi}(\underset{\gamma}{\nabla}+\vec{\gamma}) \psi$
Recall Dirac equation were (expanding out covariant derivative)

$$
\begin{aligned}
& (i \varnothing-m) \psi=0 \Rightarrow X \psi=(i g Q A-i m) \psi \\
& \Psi(-i \bar{D}-m)=0 \Rightarrow \bar{\psi} \bar{\delta}=\bar{\psi}(-i g Q A+i m) \\
& \Rightarrow \partial_{\mu} j^{n}=-g Q \bar{\psi}(-i g \nless A+i \mu+i g Q A-i g n) \psi=0
\end{aligned}
$$

Note that A piece cancels on it sown, so $\partial_{n} ;^{n}=0$ ever without A!

Noethers theorem guarantees $\partial_{\sim} j^{n}$ as a consequence of the invariance of \mathcal{L} under the internal symmetry $\psi \rightarrow e^{i \alpha \alpha} \psi$
The theorem: α invariant under a continuous symmetry $\delta \varphi_{i}=\alpha \frac{\delta \varphi_{i}}{\delta \alpha}$
$\Leftrightarrow j^{\mu} \equiv \sum_{i} \frac{\partial \alpha}{\partial\left(\partial_{\mu} \varphi_{i}\right)} \frac{\Gamma \varphi_{i}}{\delta_{\alpha}}$ conserved.
(see schwartz 3.3 for a proof)
φ_{i} can be any Fields (scalar, fermion....), and \sum_{i} runs over all fields transformed by the symueter.
Example i, $\mathcal{L}=\Psi(i \gamma-m) \psi$ invt under $\psi \rightarrow e^{i \alpha \alpha} \psi, \bar{\psi}=e^{-i ब \alpha} \bar{\psi}$

$$
\begin{aligned}
& \Rightarrow \delta \psi=i Q \alpha \psi \text {, so } \frac{\delta \psi}{\delta \alpha}=i Q \psi, \text { similar } \frac{\delta \bar{\psi}}{\sigma_{\alpha}}=-i Q \bar{\psi} \\
& j^{n}=\frac{\partial \alpha}{\partial\left(\partial_{\mu} \psi\right)} \frac{\delta \psi}{\delta_{\alpha}}+\frac{\partial \alpha}{\partial\left(\partial_{\mu} \bar{\psi}\right)} \frac{\delta \bar{\psi}}{\delta \alpha}=i \bar{\psi} \gamma^{n}(i Q \psi)+O\left(\kappa \text { docsin}+ \text { have } \partial_{2} \bar{\psi}\right) \\
&=-Q \bar{\psi} \gamma^{n} \psi \text {, same as we found bethe! }
\end{aligned}
$$

(up to a factor of g, since without a gauge field thee is no coupling) jr as constructed from a symmetry is called a Nocther current. Can play same game for a complex scalar field, will find for uni) $j^{\mu}=-i Q\left(\Phi^{+} \partial^{n} \Phi-\left(\partial^{n} \Phi^{+}\right) \Phi\right)$ exactly as we sam last week. Non-abelion requires being a little more careful with indices, well do this next time.

All our Lagrangians are also invariant under Poincarí, so: translation invariance \leftrightarrow conservation of enegss-mometum rotation invorionce \Leftrightarrow conservation of angular momentum.

In HW 3 you'll sec how to interpect the Noether current for a gauge field with a translation invariant action.

The Standard Model
We have classified spin-0 and spin- $\frac{1}{2}$ Fields by heir Lorentz reps and irtenal (gauge) symmetries, through which me introduced spin- 1 fields. Here are be Fields which comprise be Stanlarl Model:

Terminology: $L_{f}, e_{R}{ }^{p}$ are leftlight-haded lepton
$Q_{F}, u_{R}^{*} / d_{R}^{*}$ are leftlright-haded quarks
$f=1,2,3$ are gereations ($f=1$ is elector, election nentrine, up quack, dom quark; or flavors $f=2$ is muon, muon neutrino, charm pork, stone pare; $t=2$ is tan, tan reutrino, top quarts, bottom quark)
H is the Hins field
$U(1)_{y}$ is hyperchage
SU(2) (sometimes su(2)) is the weak force, and only acts on left-handed fermions (and the Hiss)
su(3) (sometimes su(3)c) is color, or the strong force
Notation. Anything with a \checkmark moor su(2) is a 2-componat rector of fields Which transforms with $e^{i \alpha^{a} t^{a}}$, like I we sum earlier (in fact, I is H).
Similely, be querks are 3-componat vectors trastomin with 3×3 untars matrices

The Standard Model consists of (almost) all terns we ca write down up to total dimension of which are invariant under lorentz and local Su(3) $\times \operatorname{su}(2) \times U(1) y$ symmetry.

Easy stuff first,' $\alpha^{\text {su(3) }, c=1, \ldots 8} \mathbb{L}^{\operatorname{su}(2), a=1, \ldots 3} \alpha^{u(1) y}$

$$
\begin{aligned}
\mathcal{L}_{k i n}= & \left|D_{m} H\right|^{2}-\frac{1}{4} G_{\mu v}^{c} G^{\mu v}-\frac{1}{4} W_{\mu v}^{a} W^{\sim v a}-\frac{1}{4} B_{\mu v} B^{\mu v} \\
& +\sum_{f=1}^{3}\left\{i L_{f}^{+} \bar{\sigma}^{\mu} D_{\mu} L_{f}+i Q_{f}^{+} \bar{\sigma}^{\mu} D_{\mu} Q_{f}+i e_{R}^{f+} \sigma^{m} D_{\mu} e_{R}^{f}+i u_{R}^{\left.f^{+} \sigma^{\mu} D_{\mu} u_{R}^{*}+i d_{R}^{f t} \sigma^{\mu} D_{\mu} d_{R}^{f}\right\}}\right.
\end{aligned}
$$

$<_{\text {Hi499 }}=+m^{2} H^{+} H-\lambda\left(H^{+} H\right)^{2} \quad$ (note mans tern has wrong sim! will set to his (eater in the corse)
Since fermions have dimension $\frac{3}{2}$, a fermion-fermion-scalcu term (know as a yukaun tern) has dimension 4. What such terns are allowed?

$$
\left.\mathcal{L}_{y_{\text {aRawn }}}\right\rangle-Y_{i j}^{e} L_{i}^{+} H e_{R}^{j}-Y_{i j}^{d} Q_{i}^{+} H d_{R}^{j}+h \cdot c .
$$

$$
\begin{aligned}
& 1 \\
& 3 \times 3 \text { matrix } \\
& 0 \text { a numbers }
\end{aligned}
$$

Consider $L^{+} H e_{R}$ term first:

Hermitian conjugates: Here are needed for Lascangian to be real, but are of ten dropped for convenience.

SU(3): $L_{i}^{+} \rightarrow L_{i}, H \rightarrow H, e_{R}^{j} \rightarrow e_{R}^{j} \quad$ (no trusformations, so trivially iuverant)
Su(2): $L_{i}^{+} \rightarrow L_{i}^{+} u^{+}, H \rightarrow u H, e_{R}^{j} \rightarrow e_{R}$ for some $u \in \operatorname{su}(2)$, so
$L_{i}^{+}+e_{R}^{j} \rightarrow L_{i}^{+}\left(u^{F} U\right) H e_{R}^{j}=L_{i}^{+} H e_{R}^{j}, \quad$ invariant (as expected, just like $\Phi^{+} \Phi$)
U(1)y. this group is Alelim, so as a shortcut, con just count charges.

$$
\begin{aligned}
& +\frac{1}{2}+\frac{1}{2}-1=0 \\
& L_{i}^{+} H e_{R}^{j}
\end{aligned}
$$

So even trough L_{i} and e_{R} trmaform differatly, It compensates, making it invaimet.

Very similar stony for second term. Can check su(3) and Such) yousect, $\begin{array}{ll}u(1)_{y}: & -\frac{1}{6}+\frac{1}{2}-\frac{1}{3}=0 \\ & Q_{i}^{+} H d_{R}^{j}\end{array}$

One final trick and wire done! We can maker an suc2)-invaiat 19 term without taking fiermition conjugates.
You will show ($\mathrm{H} H W$) that $\epsilon^{a b} Q_{a} H_{b}$ (ar $\epsilon^{a b} Q_{a}^{+} H_{b}^{+}$) is invariant under such).
So, defining $\tilde{H}=\epsilon^{a b} H_{b}^{+}=\binom{H_{2}^{*}}{-H_{1}^{p}}$, which has $Y=-\frac{1}{2}$, we con wite

$$
L_{y_{\text {nama }}} \partial-y_{i j}^{u} Q_{i}^{-\frac{1}{6}}{ }_{i}^{-\frac{1}{2}+\frac{2}{2} u_{R}^{j}}=0
$$

That's it!

$$
\begin{aligned}
& \mathcal{L}_{s m}=\mathcal{L}_{\text {kinetic }}+\alpha_{y_{\text {nama }}}+\mathcal{L}_{\text {Hiss }} \\
& =\left|D_{m} H\right|^{2}-\frac{1}{4} G_{m v}^{a} G^{\sim v a}-\frac{1}{4} W_{m v}{ }^{a} W^{\sim v a}-\frac{1}{4} B_{m} B^{\mu v} \\
& +\sum_{f=1}^{3}\left\{i L_{f}^{+} \bar{\sigma}^{n} D_{\mu} L_{f}{ }^{-} i Q_{f}^{+} \bar{\sigma}^{m} D_{m} Q_{A}+i e_{R}^{++} \sigma^{m} D_{\mu} e_{R}^{+}+i u_{R}^{++} \sigma^{m} D_{\mu} u_{R}^{f}+i d_{R}^{\not+t} \sigma^{n} D_{\mu} d_{k}^{*}\right\} \\
& -Y_{i j}^{e} L_{i}^{+} H e_{R}^{j}-Y_{i j}^{d} Q_{i}^{+} H d_{R}^{j}-Y_{i j}^{n} Q_{i}^{+} \tilde{H} u_{R}^{j}+\text { hic. } \\
& +n^{2} \mathrm{H}^{+} \mathrm{H}-\lambda\left(\mathrm{H}^{+} \mathrm{H}\right)^{2}
\end{aligned}
$$

The remaining II weeks of the cowse will be devoted to the physical consequences of this Lagrangian.

For fun, a taste of the Highs mechanism". note that this Lagrarien has no fermion masses (it cant, since all we left- and right-honded fermions have different $U(1)$ charges). But, if me set $H=\binom{0}{v}$ with v a constant, ben

$$
y_{11}^{e} L_{1}^{+} H e_{R}^{\prime} \rightarrow y_{11}^{e}\left(v_{L}^{+} e_{L}^{+}\right)\binom{0}{v} e_{R}=v y_{11}^{e} e_{L}^{+} e_{R}
$$

a mars term for he electron?
More on this, and how electromagetion emerge, from hypercharge, in the weeks to come.

The terns we didn't write down are of the form
$\theta F_{r v}^{a} \tilde{F}^{m u a}$, where $F=G, W, B$ and $\tilde{F}^{\sim v}=\epsilon^{m u p o} F_{\rho \sigma}$.
These are called theta terns. They happen to be total derivatives:

$$
\partial_{\mu} K_{\mu}=F_{\sim \sim}^{a} \tilde{F}^{n v a} \text {, where } K_{\mu}=\epsilon_{m \alpha \alpha \beta}\left(A^{v a} F^{\alpha \beta a}-\frac{g}{3} f^{a b c} A^{v a} A^{\alpha 6} A^{\Delta c}\right)
$$

(actually doing the derivative is an index-filled mess, best done with algebra of differential forms).
This means the mont contribute to the (classical) equations of notion. However, the QCD theta term is physical because it can be put in the Yukaua matrix by performing a chiral rotation $Q \rightarrow e^{i \alpha} Q, w / d_{R} \rightarrow e^{i \beta} u / d_{R}$ with $\alpha \neq \beta$. This is because this transformation is anomalous: it leaves be Lagrangian the same but changes the measure of the path integral. (More on this in QFT 2.) The theta term has non-perturbative observable effects, including inducing an electric dipole moment for the neutron. We haven't measured this, so can bound $\theta \leqslant 10^{-10}$ This is the strang-CP problem! why is θ so small?

To wrap up, let's practice with Noether currents. The SU(3) gauge symmetry has a global part given by $\alpha^{a}(x)=\alpha^{a}$ (ie. a constant transformation parameter), so we can try to apply Noethers theorem. The quark fields transform as $\left(Q_{i} \equiv Q^{+}, u^{+}, d^{f}\right)$ $\frac{\delta Q_{i}}{\sigma_{\alpha}^{a}}=; T^{a} Q_{i}$, but the gauge fields also transform, $\frac{\delta A_{\mu}^{b}}{\delta \alpha^{a}}=-f^{b a c} A_{\mu}^{c}$ So the Nether curvet is $J^{\mu n}=\left(\sum_{i} \frac{\partial \alpha}{\left.\partial \partial_{\mu} \alpha_{i}\right)} \frac{\delta Q_{i}}{\sqrt{\alpha}}\right)+\frac{\partial \alpha}{\partial\left(\partial_{\mu} A_{v}^{b}\right)} \frac{\delta A_{v}^{l}}{\delta \alpha^{2}}$. Taking into account the nonlinear
terms in Fur", we have (combining L and R quarks into a Dirac spine) 11

$$
\begin{aligned}
& \alpha \supset \bar{Q}\left(i \gamma^{n} \partial_{m}+g \gamma^{-} A_{m}^{a} T^{a}\right) Q-\frac{1}{4}\left(\partial_{\mu} A_{v}-\partial_{\nu} A_{\sim}^{a}+q f^{a b c} A_{\mu}^{b} A_{v}^{c}\right)^{2} \\
& \Rightarrow \frac{\partial \alpha}{\partial(\partial \mu Q)}=i \bar{Q} \gamma^{m}, \frac{\partial L}{\partial\left(\partial_{\mu} A_{v}^{b}\right)}=-\left(\partial^{m} A^{v b}-\partial^{v} A^{\sim b}+q f^{b a c} A^{\mu a} A^{v c}\right)=-F^{\sim v b} \\
& \text { So } J^{a \mu}=-\bar{Q} \gamma^{m} T^{a} Q+f^{b a c} A^{\mu c} F^{\mu v b}=-Q \gamma^{\mu} T^{a} Q+f^{a b c} A^{\sim b} F^{\sim v c}
\end{aligned}
$$

this is a matrix, so
using antismenets of fake and relabeling
order miters.
$-\bar{Q}_{m} r^{n}\left(T^{a}\right)_{m_{n}} Q_{m}, \quad n, n=1,2,3$
This is certainly conserved, $\partial_{\mu} J^{a n}=0$, as guaranteed by Noethe's theorem, but it's not particularly useful because it's not gauge invariant! Not only does it contain $F_{r v}{ }^{b}$, which is only Covariant, it contains $A_{v}^{b} G$ itself f, which is neither invariant nor covariant. This means the Nether curcut corresponding to a non-Abelian gauge symmetry is unphysical.

On the other hand, We Noether currents corresponding to $U(1)$ gauge symmetries are gauge-invariont and physical. As we will see next week, at low energies the left-and cight-handed fermions pair up into 4 -component Dirac spines in the $\left(\frac{1}{2}, 0\right) \oplus\left(0, \frac{1}{r}\right)$ Lorentz representation such that the Noether current of UCI Em is the electric current operator. There are also conserved charges corresponding to global symmetries of the SM Lagrangian, which you'll explore on the HW.

