The weak interaction is special for two reasons:

- the interactions of the W and Z bosons treat left- and right-handed fermions differently, which violates parity symmetry P.
- the CKM matrix is complex instead of real, which violates a combination of charge conjugation symmetry and parity symmetry called CP.

We will first define how P and CP transformations act on fields, and then examine the phenomenological consequences of the violation of these symmetries by the weak interactions.

Parity Transformations

As we briefly discussed many weeks ago, $P: (t, \mathbf{x}) \rightarrow (t, -\mathbf{x})$ implements spatial inversion and has a representation on 4-vectors as

$$P = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}.$$

Note that this matrix has $\det = -1$, so it is not an element of $SO(3,1)$, but rather $O(3,1)$. Because of this, Lorentz-invariant equations of motion do not guarantee invariance under P. However, theories of free bosonic fields (scalars and vectors) are invariant under P (see Schwartz sec. 11.5). Since $P^2 = 1$, it has eigenvalues ±1. Spin-0 particles with $P = +1$ are called scalars, and those with $P = -1$ are called pseudoscalars. For example, $P|\pi^0\rangle = -|\pi^0\rangle$, so the pion is a pseudoscalar. If the Lagrangian of a theory is invariant under P, then parity is a multiplicative quantum number: the product of the parities of the initial states equals the product of the parities of the final states.

Similarly, for spin -1:

$$P|N_0(t, \mathbf{x})\rangle = \pm |N_0(t, -\mathbf{x})\rangle, \quad P|V_i(t, \mathbf{x})\rangle = \mp |V_i(t, -\mathbf{x})\rangle.$$

The parity is determined by the eigenvalue of the spatial component; gauge fields must transform like \mathbb{J}_5, so $A_i \rightarrow - A_i$; and A_μ has $P = -1$.

P and CP violation
(spin-1 particles with $P = +1$ are called pseudovectors or axial vectors)

For fermions, we saw in our discussion of the Lorentz group that P exchanges L and R spinors. In 4-component notation,

$$ P: \psi \rightarrow \psi^0 \psi $$

Therefore, we can compute (suppressing the spacetime arguments)

$$ P: \bar{\psi} \rightarrow \bar{\psi}^+ \gamma_0 \gamma^0 \gamma^0 \psi = \bar{\psi} $$

$$ P: \bar{\psi} \gamma^0 \psi \rightarrow \bar{\psi}^+ \gamma_0 \gamma^0 \gamma^0 \psi = \bar{\psi}(\gamma^0)^+ \psi $$

Since $(\gamma^0)^+ = \gamma^0$ and $(\gamma^i)^+ = -\gamma^i$, the time and space components of this combination of spinors transforms just like a vector with $P = -1$.

Therefore,

$$ P: \bar{\psi} \rightarrow \bar{\psi} \psi $$

since spatial components are $(-1)(-1) = +1$ and time components are $(+1)(+1) = +1$.

However, inserting a Y^5 changes the signs:

$$ P: \bar{\psi} \rightarrow -\bar{\psi} \psi $$

(for 2 couplings, this term was what we called C_4)

A Lagrangian that mixes γ^5 with $\gamma^5 Y^5$ (like the weak interaction) is not symmetric under parity.

Example: polarization in W decay

$$ W \rightarrow e^+ v_e; \quad \begin{array}{c}
\text{e}^+ \text{p}_1 \\
\hline
\text{p}_w \\
\text{v}_e \text{p}_2
\end{array} $$

Ignoring constants: \[M \propto \bar{W}(p_w) Y^5 (1 - \frac{\gamma^5}{2}) V(p_1) \delta_\mu (p_w) \]

Say W is initially at rest: $p_w = (m_w, 0, 0, 0)$. Then 3 linearly independent polarization vectors are $\delta^x_{\mu} = (0, 1, 0, 0)$, $\delta^y_{\mu} = (0, 0, 1, 0)$, $\delta^z_{\mu} = (0, 0, 0, 1)$. These satisfy $\delta^i_{\mu} \cdot \delta^j_{\mu} = -\delta^{ij}$, $\delta^i_{\mu} \cdot p_w = 0$.
Define z-axis as direction of outgoing neutrino. In limit of massless neutrinos, neutrino is always left-handed: spin opposite direction of motion, and only top two components of 4-component spinor are nonzero. For neutrino energy $E\nu$, $U(\nu_2) = \sqrt{2} E\nu \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$ (recall there is a very big typo in Schwartz eq. (11.26)). See errata on Schwartz book website.)

The (\uparrow) in the upper two components specifies spin down along z-axis.

Positron moves in $-z$ direction to conserve momentum. Positron spinors can be

$$V^{(1)}(\nu) = \begin{pmatrix} \sqrt{E\nu - \mu} \\ 0 \\ -\sqrt{E\nu + \mu} \\ 0 \end{pmatrix} \text{ or } V^{(2)}(\nu) = \begin{pmatrix} 0 \\ \sqrt{E\nu + \mu} \\ 0 \\ \sqrt{E\nu - \mu} \end{pmatrix}.$$

Recall $V^{(1)}$ represents a spin-down positron while $V^{(2)}$ represents a spin-up positron.

Let's compute the squared amplitude for ν^{\uparrow}, i.e., use $V^{(1)}(\nu)$.

Compute M for each W polarization, square, and average.

$$M^{\uparrow}_x = \sqrt{2} E\nu \begin{pmatrix} 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} \uparrow \\ \uparrow \\ \uparrow \\ \uparrow \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ \sqrt{E\nu + \mu} \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ \sqrt{E\nu + \mu} \\ 0 \\ \sqrt{E\nu - \mu} \end{pmatrix} \begin{pmatrix} 0 \\ \sqrt{E\nu - \mu} \\ 0 \\ \sqrt{E\nu + \mu} \end{pmatrix} = 0.$$

Similarly, $M^{\uparrow}_y = \sqrt{2} E\nu \begin{pmatrix} 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \uparrow \\ \uparrow \\ \uparrow \\ \uparrow \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ \sqrt{E\nu + \mu} \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ \sqrt{E\nu + \mu} \\ 0 \\ \sqrt{E\nu - \mu} \end{pmatrix} \begin{pmatrix} 0 \\ \sqrt{E\nu - \mu} \\ 0 \\ \sqrt{E\nu + \mu} \end{pmatrix} = 0.$

$$M^{\uparrow}_z = \sqrt{2} E\nu \begin{pmatrix} 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \uparrow \\ \uparrow \\ \uparrow \\ \uparrow \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ \sqrt{E\nu + \mu} \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ \sqrt{E\nu + \mu} \\ 0 \\ \sqrt{E\nu - \mu} \end{pmatrix} \begin{pmatrix} 0 \\ \sqrt{E\nu - \mu} \\ 0 \\ \sqrt{E\nu + \mu} \end{pmatrix} = \sqrt{2} E\nu \sqrt{E\nu + \mu}$$

$$\Rightarrow \frac{1}{3} (|M^{\uparrow}_x|^2 + |M^{\uparrow}_y|^2 + |M^{\uparrow}_z|^2) \propto E\nu (E\nu + \mu) = E\nu (E\nu + \mu).$$

Interpretation: positron spin is an EPR-like measurement of W spin. Along neutrino axis, W could have had spin $-\frac{1}{2}, 0, \text{ or } 1$; only spin 0 has a nonvanishing amplitude, consistent with angular momentum conservation. (Recall $E^x \pm i E^y$ have eigenvalues ± 1 under J_z, E^z has eigenvalue 0.)
Momentum conservation: \(p_{2e} = -E_u \). To find \(E_u \), \(P_u = p_i + p_{2e} \Rightarrow (p_u - p_2) = p_i \), so \(m_w^2 - 2m_w E_u = m_e^2 \), and \(E_u = \frac{m_w^2 - m_e^2}{2m_w} \). \(E_e = m_u - E_u = \frac{m_u + m_e}{2} \).

\[
E_u(E_e + P_{2e}) = \left(\frac{m_w^2 - m_e^2}{2m_w} \right) \left(\frac{m_w^2 + m_e^2 - m_u^2}{2m_w} \right) = \frac{m_u - m_e}{2} \frac{m_e}{m_w}.
\]

Note that this vanishes in limit \(m_e \rightarrow 0 \)!. If we repeated the calculation for the other positron spin, we would find \(\langle 1M^+ \rangle \propto \frac{m_w}{m_e} \).

So the relative probability of positron having spin aligned with direction of motion is \(\frac{m_u}{m_e} \sim 10^{10} \). Could use this to give an unambiguous definition of "left." The \(m_e^2 \) penalty is known as helicity suppression and we will see it again next lecture.

CP transformations

Another discrete symmetry operation is charge conjugation, denoted \(C \). Roughly speaking, it takes a spin-up electron to a spin-down positron:

\[
C: \psi \rightarrow -i \gamma^5 \psi^*.
\]

Under \(C \), \(\bar{\psi} \rightarrow \bar{\psi} \) and \(\bar{\psi} \gamma^5 \psi \rightarrow \bar{\psi} \gamma^5 \psi \) (see Schwartz 11.4), so for Dirac Lagrangian is invariant under charge conjugation. For gauge interactions, \(\bar{\psi} \gamma^\mu \psi \rightarrow -\bar{\psi} \gamma^\mu \psi \), so if we define \(C: A_\mu \rightarrow -A_\mu \), then \(\bar{\psi} \gamma^\mu \psi \) is invariant. This is a bit weird since \(A \) is real, but note that \(\gamma^5 = 1 \), so \(A_\mu \) is still an eigenstate of \(C \), just with eigenvalue \(-1 \).

We can also combine \(C \) and \(P \) to see under what conditions the SM Lagrangian is invariant under the combined transformation.

Can show the following transformation properties under \(CP \):

\[
\bar{\psi}_i \psi_j (t, \mathbf{x}) \rightarrow + \bar{\psi}_j \psi_i (t, -\mathbf{x}) \quad \bar{\psi}_i \gamma^5 \psi_j (t, \mathbf{x}) \rightarrow \bar{\psi}_j \gamma^5 \psi_i (t, -\mathbf{x}) \\
\bar{\psi}_i \gamma^\mu \psi_j (t, \mathbf{x}) \rightarrow + \bar{\psi}_j \gamma^\mu \psi_i (t, -\mathbf{x}) \quad \bar{\psi}_i \gamma^5 \gamma^\mu \psi_j (t, \mathbf{x}) \rightarrow \bar{\psi}_j \gamma^5 \gamma^\mu \psi_i (t, -\mathbf{x})
\]

where \(A = A_\mu, \mathbf{w}, \mathbf{z} \) is any vector field.

Consider the part of the SM Lagrangian containing the \(\mathbf{W}^\pm \):

\[
L_w = \frac{e}{\sqrt{2} \sin \theta_w} \left[\bar{u}_i V_{i3} W^+(1 - \gamma^5) d_j + \bar{d}_i V_{ij}^+ W^-(\frac{1 - \gamma^5}{2}) u_j \right]
\]

Under \(C \), complex fields transform to their conjugates, so \(C \) takes \(W^+ \) to \(\bar{W}^- \).

By the above, all the fermions transform by changing order but not sign, so
\[C_P \rightarrow \frac{e}{\sqrt{3} \sin \theta_W} \left[\bar{d}_j V_{ij} W^{-1} \left(\frac{-i}{2} \right) u_i + \bar{u}_j V^+_{ij} W^+ \left(\frac{-i}{2} \right) d_j \right] \]

In matrix form, \(\bar{u} V \left(\frac{-i}{2} \right) d \rightarrow \bar{u} (V^+)^* \left(\frac{-i}{2} \right) d = \bar{u} V^* \left(\frac{-i}{2} \right) d \).

So if \(V = V^* \), i.e. if all CKM elements are real, CP is conserved. However, as discussed last week, \(V \) has one complex phase, which is known (as you now can see) as a CP-violating phase.

This is not a basis-independent statement since we can always redefine the quark fields with phase rotations that leave the mass matrix invariant, but determinants are basis-independent:

\[\text{det} \left[Y_u, Y_d \right] = -\frac{16}{V^6} (m_t - m_c)(m_t - m_u)(m_c - m_u)(m_b - m_s)(m_b - m_d)(m_s - m_d)(m_s - m_d) J \]

where \(J \) is the Jarlskog invariant

\[J = \sin \theta_1 \sin \theta_2 \sin \theta_3 \cos \theta_1 \cos \theta_2 \cos \theta_3 \sin \delta \]

\(J \) vanishes if and only if the CP-violating phase \(\delta = 0 \).

CP violation and K−K mixing

Let's look at some observable consequences of CP violation.

The lightest mesons containing strange quarks are the neutral kaons \(K^0 = \bar{s}d \) and \(\bar{K}^0 = \bar{d}s \). \(P \) is conserved in the strong interactions, so the parity of the kaon can be determined from its production:

\[P |K^0> = -|K^0> \quad P |\bar{K}^0> = -|\bar{K}^0> \]

CP exchanges particles and antiparticles, so \(C |K^0> = |\bar{K}^0> \) and \(C |\bar{K}^0> = |K^0> \)

⇒ the CP eigenstates are linear combinations:

\[K_1 = \frac{1}{\sqrt{2}} (K^0 + \bar{K}^0), \quad K_2 = \frac{1}{\sqrt{2}} (K^0 - \bar{K}^0) \]

\(CP = -1 \quad CP = +1 \)

The pions \(\pi^0, \pi^\pm \) have \(P = -1 \). So a neutral state with two pions (\(\pi^0 \pi^0 \), or \(\pi^+ \pi^- \)) has \(CP = +1 \), and a state with three pions (\(\pi^0 \pi^+ \pi^- \) or \(\pi^+ \pi^0 \pi^- \)) has \(CP = -1 \). If \(CP \) were conserved in the Standard Model, \(K_1 \) should never decay to \(\pi \pi \). Since \(m_{K^0} = 498 \text{ MeV} \), and \(3m_{\pi} = 405 \text{ MeV} \), there is a strong phase space suppression for the \(3\pi \) decay, as well as factors of \(\frac{1}{9\pi^3} \) from the additional \(\frac{d^3 p}{(2\pi)^3} \).
Therefore, K_ℓ has a much smaller decay width and a longer lifetime! Experimentally, there are two mass eigenstates, K_ℓ and K_s ("long" and "short") with $T_\ell = 0.895 \times 10^{-13}$, $T_s = 5.116 \times 10^{-8}$ s. To produce pure K_ℓ, just wait long enough:

\[\pi^+, \pi^-; \text{whatever} \rightarrow \begin{array}{c} K_\ell \text{ and } K_s \end{array} \]

Only K_ℓ (all K_s have decayed)

In 1964, it was found that $\text{Br}(K_\ell \to \pi^+\pi^-) \approx 0.2\%$; this indicates CP violation! At a Feynman diagram level, $K_\ell \to \pi^+\pi^-$ must involve a weak interaction vertex:

\[\bar{d} \to \bar{u} \pi^+; \quad \bar{s} \to \bar{d} \pi^- \quad \alpha V_{us} \ (\text{assuming } V_{ud} \approx 1) \]

However, K_ℓ is a superposition of $s\bar{d}$ and $d\bar{s}$, and these states can mix:

\[\bar{d} \to \bar{s} \quad \alpha V_{us} V_{cd} V_{us} \]

This product of CKM elements contains the CP-violating phase.

For HW you will look at mixing in the $B^0\bar{B}^0$ system which contains 6 quarks instead of 5 quarks.

One final aside: CP violation is a necessary condition to generate the matter-antimatter asymmetry in the universe. However, the CP violation measured in these meson systems is not sufficient to generate the observed asymmetry! There must be additional sources of CP violation beyond the Standard Model.