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We now consider an 0cal correction to the process we studied
last week
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IHere
,
we are integrating over 3-body phase space,
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Let's put off actually calculating ✗
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for a bit and see what

the cross section looks like Fo- a generic final state .
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There is a nice way to interpret this result. Let's write 8L
Of

= too 1

I
× I

✗
"
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of a particle of mass m is given by T= In fd IT < 1m13
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So we can interpret the rate for et e- → ntm
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r as he product
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over polarizations of the final-state photon . This is a special case

of the narrouruidthapproximation , which is a general statement

about tie factorization of Feynman diagrams through an

intermediate state . We will see this again when we study weak interactions.
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By the analysis above
,
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- o ( a sort singularity ), o - 0-3*0

( a Collina- singularity) . This behavior is generic in QFT: massless

particles prefer to be emitted with low energies and along he

directions of charged particles .

If we pretend that the photon has a mass mr , and letA = nai,
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However, these singularities are notphyical ! It turns out they
cancel exactly against the interference ter- s fro-
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a Garp production cross section ( O of 1 photon)

What this result tells us is Kat ete
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with an arbitrarily

low energy photon, or o- e emitted along o- e of the muon directions
,

is indistinguishable from just Mtn
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in the final state
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Charged particles are accompanied by clouds of photons
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10LMore concrete interpretation : ay real experiment will have
a finite energy resolution Eres and angular resolution Greg . Instead of

cutting off the integral with Mr, use F-re
,
and Eres instead .

This is technically complicated, so we will justquote the answer
'

,

olete -→ntr-ry-o.ge?=..fh'z.efhlI-E..s-D+--)t---)eIlu-iecross Er> Eres
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.rs
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If Q ⇒ Eres

,

could be in a situation where

y ,
and perturbation theory breaks down .41¥.es/s8ti

Solution ! Consider e'
- e-→ n'-it NV, and

don't restrict to a

fixed number of photons .

This is no lover at a Fixed order in

the coupling e
,
but corresponds better to the physical situation where

distinguishing 2 vs. } vs. & very low- energy photons isnt possible
in practice . Inclusive cross sections often have better convergence properties.

Hui
.
emission of photon from initial state .

Lessons From this week :

.AE#iresi-iities when you ask it dumb Cunphysical)
questions. By relating amplitudes to a physically measurable

quantity, we always get finite results
.

• Singularities tend to appear beyond the lowest-order diagrams
.

Resolving them may require sunning over several amplitudes

coherently .

• Not all loop diagrams suffer from this complication :

electron magnetic moment is one example .


