Photon emission: $e^{+} e^{-} \rightarrow \mu^{+} \mu^{-} \gamma$

We now consider an $\theta(\alpha)$ correction to the process we studied last week.

Assure $Q^{2}=\left(p_{1}+p_{2}\right)^{2}>m_{\mu}^{2}$ so we can ignore m_{e}, m_{μ}.

Let $S^{\mu \alpha}=-i e\left[r^{\alpha} \frac{i\left(p_{3}+p_{r}\right)}{\left(p_{3}+p_{r}\right)^{2}} \gamma^{\mu}-\gamma^{i\left(p_{4}+p_{r}\right)} r_{\left(p_{4}+p_{r}\right)^{2}}^{*}\right] \quad \begin{aligned} & \text { (not symmetric in } \mu \text { ad } \alpha \text { ! } \\ & \text { watch in dee order! }\end{aligned}$
Cos section after avenging over initial and summing over final spins is

$$
\begin{aligned}
& \left.\sigma_{r}=\left.\frac{1}{2 a^{2}} \int d \pi_{3}\langle | M\right|^{2}\right\rangle=\frac{e^{4}}{2 a^{6}} L^{\mu v} x_{r v} \\
& \mid v_{1}-v_{v} i^{i} 2 \quad a^{2}=\left(2 E_{1}\right)\left(2 E_{r}\right) \text { in cM frae } w / E_{1}=E_{2}=\frac{\sqrt{a^{2}}}{2}
\end{aligned}
$$

$L^{N v}$ is left half of the diagram:

$$
L^{\mu \nu}=\frac{1}{4} \sum_{s_{1}, s_{2}} \bar{v}_{s_{2}}\left(\rho_{2}\right) \gamma^{\mu} u_{s_{1}}\left(p_{1}\right) \bar{u}_{s_{1}}\left(p_{1}\right) \gamma^{\nu} v_{s_{2}}\left(\rho_{2}\right)=\frac{1}{4} T r\left[\ell_{2} \gamma^{\mu} \rho_{1} \gamma^{v}\right]=p_{1}^{\mu} \rho_{2}^{v}+p_{1}^{v} p_{2}^{r}-\frac{1}{2} Q^{2} \eta^{\mu \nu}
$$

$x^{\mu v}$ is right hal f, involving the proton:

$$
\begin{aligned}
& X^{\mu v} \text { is right hal }\left(f_{\text {, involving the photon: from }\left(\bar{u} \gamma^{\mu} \ldots \gamma^{\mu_{N}} v\right)^{+}}^{X^{\mu \nu}=\int d \pi_{\substack{s_{s}, s_{4}, \\
\text { pols. }}}\left[\bar{u}_{s_{3}}\left(p_{\beta}\right) S^{\mu \alpha} v_{s_{4}}\left(p_{4}\right) \bar{v}_{s_{4}}\left(p_{4}\right) S^{\beta v} u_{s_{3}}\left(p_{3}\right) \epsilon_{\alpha}^{*}\left(p_{\gamma}\right) \epsilon_{\rho}\left(\rho_{\gamma}\right)\right]}\right.
\end{aligned}
$$

\therefore apologies tor
Use $\sum_{\text {pols. }} \epsilon_{\alpha}^{\beta}\left(p_{r}\right) \epsilon_{p}\left(p_{r}\right) \rightarrow-\eta_{\alpha s}: X_{\mu v}=-\int d \pi_{3} \operatorname{Tr}\left[p_{3} S^{\mu \alpha} p_{4} S^{\alpha v}\right]$ height: useful abuse of notation here

Here, we are integrating over 3-body phase space,

$$
d \Pi_{3}=\frac{d^{3} p_{3}}{(2 \pi)^{3}} \frac{d^{3} p_{4}}{(2 \pi)^{3}} \frac{d^{3} p_{r}}{(2 \pi)^{3}} \frac{1}{2 E_{3}} \frac{1}{2 E_{4}} \frac{1}{2 E_{r}}(2 \pi)^{+} \delta\left(Q-p_{3}-\rho_{4}-p_{r}\right)
$$

where $Q=p_{1}+p_{2}$,
Left's put off actually calculating $x^{\sim u}$ for a bit and see what the cross section looks like for a generic final state.
By the ward identity, we know $Q_{m} x^{m v}=O$. After phase space integration, X is a function of Q on b, and symmetric in $\mu \rightarrow v$ (because $L^{\mu v}$ is),
So $X_{\mu v}=\left(Q_{\mu} Q_{v}-Q^{2} \eta_{\mu v}\right) \times\left(Q^{2}\right)$

In this form, $\eta^{\mu \nu} X_{\mu v}=\left(Q^{2}-4 Q^{2}\right) \times\left(Q^{2}\right)$, so $X\left(Q^{2}\right)=-\frac{1}{3 Q^{2}} \eta^{\mu \nu} X_{\mu v}$
Plug in for $L^{\mu v}$: $L^{m v} X_{n v}=\left(\rho_{1}^{m} P_{2}^{v}+p_{1}^{v} P_{2}^{m}-\frac{1}{2} Q^{2} \eta^{m v}\right)\left(Q_{m} Q_{v}-Q^{2} \eta_{r v}\right) \times\left(Q^{2}\right)$

$$
=\left(2\left(p_{1} \cdot Q\right)\left(p_{L} \cdot Q\right)-\frac{1}{2} Q^{4}-2 a^{2}\left(p_{1} \cdot p_{2}\right)+2 Q^{4}\right) \times\left(a^{2}\right)
$$

Now, $Q^{2}=\left(p_{1}+p_{2}\right)^{2}=2 p_{1} \cdot p_{2}$ (assuming, me $=0$), and similar,

$$
\begin{aligned}
p_{1} \cdot Q & =p_{1} \cdot\left(P_{1}+p_{2}\right)=p_{1} \cdot p_{2}=\frac{Q^{2}}{2}=p_{2} \cdot Q \\
L^{\sim} X_{\mu v} & =\left(2\left(\frac{Q^{2}}{2}\right)\left(\frac{Q^{2}}{2}\right)-\frac{1}{2} Q^{4}-Q^{4}+2 Q^{4}\right) \times\left(Q^{2}\right)=Q^{4} \times\left(Q^{2}\right)=-\frac{Q^{2}}{3} \eta^{\sim v} X_{\mu v} \\
\Rightarrow \sigma_{r} & =\frac{e^{4}}{2 Q^{6}} L^{\mu} X_{\mu v}=-\frac{e^{4}}{6 Q^{4}} \eta^{\sim v} X_{n}
\end{aligned}
$$

Recall from last week that $\frac{d \sigma_{e^{2} c^{-}-r^{2} \mu-}}{d \theta}=\frac{e^{4}}{32 \pi Q^{2}}\left(1+\cos ^{2} \theta\right)$, so intcratry, are θ,

$$
\sigma_{0} \equiv \sigma_{e^{+} t^{-} \rightarrow \mu^{2} \mu^{-}}=\frac{e^{4}}{12 \pi \alpha^{2}} .
$$

Thug we can write $\sigma_{r}=\sigma_{0}\left(\frac{-2 \pi}{Q^{2}} \eta^{\mu v} X_{\nu v}\right)$.

There is a nice way to interpret his result. Lets write $\sigma_{r}=\frac{4 \pi \sigma_{0}}{Q} \times \frac{1}{2 Q} x^{\mu \nu}\left(-\eta_{m v}\right)$, where $Q=\sqrt{Q^{2}}$. The decay rate of a particle of mass M is given by $\left.\Gamma=\left.\frac{1}{2 m} \int d \pi\langle | M\right|^{2}\right\rangle$. So we con interpret the rate for $e^{+} e^{-} \rightarrow \mu^{+} \mu^{-} r$ as he product of the rate for $e^{+} e^{-} \rightarrow r^{\infty}$, a virtual photon of mass Q, times he decay rate of that photon, $\gamma^{\infty} \rightarrow \mu+\mu-r$, summed over polarizations of the find-stzte photon. This is a special case of the narrow-uidon approximation, which is a general statement about the factorization of Feynman diancons though an intermediate state. we will see this again when we study weak interaction.
Let's parameterize the phase space of $V^{B} \rightarrow \mu^{+} \mu r$ using Mandestom Variables as

$$
\begin{aligned}
& S=\left(p_{3} r p_{4}\right)^{2} \equiv Q^{2}\left(1-x_{r}\right) \\
& t=\left(p_{3}+p_{r}\right)^{2} \equiv Q^{2}\left(1-x_{1}\right) \\
& u=\left(p_{4}+p_{r}\right)^{2} \equiv Q^{2}\left(1-x_{2}\right)
\end{aligned}
$$

From $H W 4$, $s+t+u=\sum m_{i}^{2} \approx Q^{2}$ (you derived it for $p_{1}+p_{2} \rightarrow \rho_{3}+p_{4}$, but a similar result holds with appropriate minus sims to $\left.Q \rightarrow \beta_{3}+p_{T}+r\right)$
$\Rightarrow x_{r}+x_{1}+x_{2}=2$, take $x_{r}=2-x_{1}-x_{2}$ so x_{1} and x_{2} are independent.
Limits of integration: $t=2 p_{3} \cdot p_{r}=2 E_{3} E_{r}\left(1-\cos \theta_{i r}\right) . \quad t_{r i n}=0$ when $E_{r}=0$;
$t_{\text {max }}=4 E_{3} E_{r}$ when $\cos \theta_{3 r}=-1$. If $E_{4}=0, E_{3}=E_{r}=\frac{Q}{2}$, so $t_{\text {max }}=Q^{2}$

$$
\begin{aligned}
& \Rightarrow x_{1} \text {, min }=0, x_{1, \text { max }}=1 \\
& \int d \Pi_{3}=\frac{Q^{2}}{128 \pi^{3}} \int_{0}^{1} d x_{1} \int_{1-x_{1}}^{1} d x_{2} \quad \text { (recall very similar form from Nw 3) } \\
& \operatorname{Tr}\left[\ell_{3} s^{\mu \alpha} l_{4} s^{\alpha \mu}\right]=\frac{8 e^{2}\left(x_{1}^{2}+x_{L}^{2}\right)}{\left(1-x_{1}\right)\left(1-x_{2}\right)} \quad(A H w)
\end{aligned}
$$

This diverges logarithmically ($\int \frac{1}{x} d x$) at $x_{1}, x_{2}=1$.

By the analysis above, $x_{1}=1$ corresponds to $2 E_{3} E_{r}\left(1-\cos \theta_{3 r}\right)=0$.
This can happen cither if $E_{r}=0$ (a soft singularity), or $\theta_{3 r}=0$ (a collinear singularity). This behavior is generic in QFT: Massless particles prefer to be emitted with low energies and along te directions of charsed particles.
If we pretend that the photon has a mass n_{r}, ard let $\beta=\frac{M_{r}{ }^{2}}{Q^{2}}$, De limits of integration charge to $\int d \pi=\int_{0}^{1-\beta} d x_{1}^{1-x_{1}-\beta} 1-\frac{\beta}{1-x_{1}} d x_{2} \quad(* H W)$ Doing the integral, $\int_{0}^{1-\beta} d x_{1} \int_{1-x_{1}-\beta}^{1-\frac{\beta}{1-x_{1}} d x_{2}} \frac{x_{1}^{2}+x_{2}^{2}}{\left(1-x_{1}\right)\left(1-x_{2}\right)}=\frac{\ln ^{2} \beta+3 \ln \beta-\frac{\pi^{2}}{3}+6.6 \text { double }}{}$
double
logwinni
from x_{1} and x_{2}
However, these singularities) are not physical! It twas out they cancel exactly against the interferace terms from
$i \mu=$

The result is $6-\frac{\pi^{2}}{3} \rightarrow \frac{3}{2}$ for the finite pieces, so

$$
\Gamma\left(\gamma^{3} \rightarrow \mu^{+} \mu^{-} \gamma\right)=\frac{e^{2}}{2 a} \frac{Q^{2}}{128 \pi^{3}}\left(8 \times \frac{3}{2}\right)=\frac{3 a e^{2}}{64 \pi^{3}}
$$

$\sigma_{\text {tot }}=\sigma_{0}+\frac{4 \pi \sigma_{0}}{a} \frac{3 a e^{2}}{64 \pi^{3}}=\sigma_{0}\left(1+\frac{3 e^{2}}{16 \pi^{2}}\right) \quad \begin{aligned} & \text { quartion correction to } \mu^{2} \mu-\text { inclusive } \\ & \text { production cross section (} 0001 \text { photon) }\end{aligned}$
What this result fells us is that $e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$with an arbitrarily low enerny photon, or ore emitted along ane of the muon directions, is indistinguishable from just $\mu^{\prime} \mu^{\prime}$ in the final state. Changed particles are accompanied by clouds of photons.

More concrete interpretation: as real experiment will have a finite every resolution Eves and angular resolution $\theta_{\text {res }}$. Instead of Cutting off the integral with m_{r}, use $E_{\text {res }}$ and $t_{\text {cos }}$ instead.
This is technically complicated, so me will just quote the ansueri $\begin{aligned} & \left.\sigma\left(e^{+} c^{-} \rightarrow \mu^{+} \mu^{-} \gamma\right)\right|_{E_{r}>E_{\text {rs }}} ^{\text {exclusive cross }}\end{aligned}=\sigma_{0} \frac{e^{2}}{8 \pi^{2}}\left(\ln \frac{1}{\theta_{\text {res }}}\left[\ln \left(\frac{Q}{2 E_{\text {cos }}}-1\right)+\ldots\right]+\ldots\right)$ $\operatorname{section}($ exacts $) \quad \theta_{r n}>\theta_{\text {res }}$
photon)
Focus on $\ln \frac{a}{2 E_{\text {frs }}}$. If $Q \gg E_{\text {res, }}$ could ice in a situation where $\ln \left(\frac{Q}{2 E \text { es }}\right)>\frac{8 \pi^{2}}{e^{2}}$, and perturbation theory breaks down.
Solution: Consider $e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}+N V$, and doit restrict to a fixed number of photons. This is no loner at a fixed order in the coupling e, but corresponds better to the physical situation where distinguishing 2 va. 3 vs. 4 very low-ereng photons snit possible in practice. Inclusive cross sections often have better convorencec properties. HW, emission of photon fro initial state.
Lessons from this week:

- QFT gives infinities when you ask it dumb (unphysical) questions. By relating amplitudes to a phessicalls measurable quantity, we alums get finite results.
- Singularities tend to appear beyond the lowest-oder diagrams. Resolving dem nay require summing over several amplitudes conereaty.
- Not all loop diagrams suffer from this complication. plectra magnetic moment is one example.

