Alternatives, we could redefine the norm to be Lorentz-invariant, $\langle\psi \mid \psi\rangle=\left|c_{0}\right|^{2}-\left|c_{1}\right|^{2}-\left|c_{2}\right|^{2}-\left|c_{1}\right|^{2}$, but 2 ais is not positive definite!
Solution in two steps: (1) use fields as the representation, which do have witary (infinite-dimessional) representations, and (2) project out the wrong-sign component. Since vectors live in the $\left(\frac{1}{2}, \frac{1}{2}\right)$ representation, which has $j=0$ and $j=1$ components, this is equivalent to projecting out the $j=0$ component, leaving $j=1$ as appropriate for spin-1.

Mometum-dependet
polarization polarization vector-
Write A_{μ} in Fourier space: $\quad A_{\mu}(x)=\int \frac{d^{4} p}{(2 \pi)^{4}} \epsilon_{\mu}(p) e^{-i p \cdot x}$ A borate transformation will act on Pis field as

$$
A_{\mu}(x) \rightarrow \Lambda_{\mu}^{v} A_{\mu}\left(\Lambda^{-1} x\right)=\int \frac{d^{4} \rho}{(2 \pi)^{4}} \Lambda_{\mu}^{v} \epsilon_{\nu}(p) e^{-i p \cdot\left(\Lambda^{-1} x\right)}
$$

polarization vectors rotate, but pm (a dummy integration variable) does not. This explains why we pick cigenstates of P^{-r} before defining action of W_{n}. Use equations of notion to comet independent polarization:

$$
\square A_{\mu}-\partial_{n}\left(\partial^{v} A_{v}\right)=0 \quad(H W)
$$

Choose a gauge such that $\partial^{v} A_{v}=0$. (can always do this: if $\partial^{v} A_{v}=X$, trike $A_{v} \rightarrow A_{v}+\frac{1}{g} \partial_{v} \lambda, \partial^{v} A_{v} \rightarrow X+\frac{1}{g} \partial^{2} \lambda$. Solve for λ to cancel X.) \Rightarrow in Fowier space, $p^{2}=0$ and $p \cdot \epsilon=0$. The latter is an algebraic constraint which is Lorentz-invaint, so it projects out spin- 0 as desired, Reduces for polarizations $\epsilon_{m}{ }^{0}=(1,0,0,0), \epsilon_{\mu}{ }^{\prime}=(0,1,0,0), \ldots$ to three. But we have ore more quire transformation left! Con still have $A_{m}=\partial_{\mu} \lambda$ consistent with $\partial^{2} A_{\mu}=0$ if $\partial^{2} \lambda=0$. In this case, A_{μ} is gauge-equivalet to O (or pure gauge) and not physical. After Fowier-tcanstorming, this means the polarization proportional to 4 -momentum $\left(\epsilon_{m} \propto p_{n}\right)$ is un physical.

We are Rus left with two independent polarization vectors. in a frame where $P_{\mu}=(E, 0,0, E)$, (by are

$$
\begin{aligned}
& \epsilon_{\mu}^{\prime}=(0,1,0,0) \quad\{\text { linear polarization } \\
& \epsilon_{\mu}^{2}=(0,0,1,0) \\
& \epsilon_{\mu}^{L}=\frac{1}{\sqrt{2}}(0,1,-i, 0) \quad \text { \} circular polarization } \\
& \epsilon_{n}^{R}=\frac{1}{\sqrt{2}}(0,1, i, 0) \quad
\end{aligned}
$$

In QFT, these polarization vector represent physical stater, so we con trite linear combinations of them:

$$
\begin{aligned}
\text { es. }|\epsilon\rangle & =c_{1}|1\rangle+c_{2}|2\rangle \cdot \text { Define }\langle i 1 j\rangle=-\epsilon_{\mu}^{(i)} \epsilon^{0} \mu(j) \\
\langle\epsilon \mid \epsilon\rangle & =\left|c_{1}\right|^{2}\langle 1 \mid 1\rangle+\left|c_{2}\right|^{2}\langle 212\rangle+c_{1}^{\infty} c_{2}\langle 1 \mid 2\rangle+c_{1} c_{2}{ }^{(1}\langle 211\rangle \\
& -\left(\epsilon_{\mu}^{\prime}\right)^{\prime \prime} \epsilon^{\prime \mu}=1 \\
& =\left|c_{1}\right|^{1}+\left|c_{2}\right|^{2}
\end{aligned}
$$

This inner product is Lorentz-inuminat because the basis veto Charge under lorentz, but not $|C|^{2}$! Moreover, gauge invrriarce let us get til of the states with non-poritive norm:

$$
\epsilon_{\mu}^{0}=(1,0,0,0)=\langle\langle 0 \mid 0\rangle=-1 \text {, bad! }
$$

$\left.\epsilon_{\mu}^{f}=(1,0,0,1)=\right\rangle\langle f \mid f\rangle=0$, unphysical (cancels out of any (forward, or longitudinal, polarization) computation)
Including the Lagrangian for An, our spin-0 and spin-1 Lagrangian is now

$$
\alpha=\left|D_{m} \Phi\right|^{2}-m^{2} \Phi^{+} \Phi-\lambda\left(\Phi^{+} \Phi\right)^{2}-\frac{1}{4} F_{\mu v} F^{n v}
$$

Note: $\left[A_{\mu}\right]=\left[\partial_{m}\right]=1$ from covariant derivative, so $\left[F_{m} F^{n u}\right]=4$, as required.

The derivative term in the Lagrangian to- I with only The global symmetry, $\partial_{n} \Phi^{+} \partial^{n} \Phi$, gave rise to the equations of notion for non-interacting (free) scalar fields. Once promoted to a covariant derivative, $\left|D_{m} \Phi\right|^{2}$ contains interactions between Φ and A_{m}.

$$
\begin{aligned}
\left|D_{\mu} \Phi\right|^{2} & =\left(\partial_{\mu} \Phi^{+}+i g Q A_{\mu} \Phi^{+}\right)\left(\partial^{\mu} \Phi-i g Q A_{\mu} \Phi\right) \\
& =\partial_{\mu} \Phi^{+} \partial^{\mu} \Phi-A_{\mu}\left(-i g Q\left(\Phi^{+} \partial^{\mu} \Phi-\partial^{\mu} \Phi^{+} \Phi\right)\right)+g^{2} Q^{2} A_{\mu} A^{\mu}|\Phi|^{2}
\end{aligned}
$$

in QM, this mould be the probability current for the wavetraction. In QET, it's literally the electric current for a charged scalar particle.
$\Rightarrow \mathcal{L}$ contains $-\frac{1}{4} F_{v v} F^{\sim v}-A_{m} J^{m}$, which is exactly how you mould write Maxuellis equations with an external source $J^{n}=(\rho, \vec{\jmath})!$ So Φ sowces currents, which create \vec{E} and \vec{B} firlds from A_{n}, which back-reacts on 区. These coupled equations are impossible to solve exactly, so starting in 2 week, we will use perturbation theory in the coupling strength $g Q$ to approximate the solutions.

Nonabelian gauge fields (very briefly!)
What if we tried one same trick with the SU(2) symmetry? We wont the Lagrasion to be invariant under be local symmetry $\Phi \rightarrow e^{i \alpha^{a}(x) \tau^{a}} \Phi$ where $\tau^{a} \equiv \frac{\sigma^{a}}{2}(a=1,2,3)$. Guess a covariant derivative: $D_{\mu} \Phi=\partial_{\mu} \Phi-i g A_{\mu}^{a} \tau^{a} \Phi$. This time, we now need three spinel fields A_{μ}^{a}, ore for each τ.
will postpone proof for later, but the correct trastormation culls are $\delta A_{\mu}=\frac{1}{9} \partial_{\mu} \alpha+i\left[\alpha, A_{\mu}\right]$ (matrix commutator)
or in components, $\delta A_{\mu}^{a}=\frac{1}{g} \partial_{\mu} \alpha^{a}-\epsilon^{a b c} \alpha^{b} A_{\mu}^{c}$ (recall comertation relation for Pauli matrices, $\left.\left[\sigma^{a}, \sigma^{b}\right]=2 i \epsilon^{a b c} \sigma^{c}\right)$
The correspading non-abelian field strath (a 2×2 matrix-valued create terror) is $F_{N v}=\left(\partial_{\mu} A_{v}-\partial_{v} A_{\mu}\right)$-iq $\left[A_{n}, A_{v}\right] \longleftarrow$ extra tern because Pali matrices A clever way to unite this:
$D_{\mu}=\partial_{\mu}-i g A_{\mu} \quad$ (abstract covariant derivative opeato-)

$$
\begin{aligned}
{\left[D_{\mu}, D_{v}\right]=} & \left(\partial_{\mu}-i g A_{\mu}\right)\left(\partial_{v}-i g A_{v}\right)-\left(\partial_{v}-i g A_{v}\right)\left(\partial_{\mu}-i g A_{\mu}\right) \\
= & \partial_{\mu} \partial_{v}-i g \partial_{\mu} A_{v}-i g A_{\mu} \partial_{\mu}-i g \not \partial_{\mu} \partial_{v}-g^{2} A_{\mu} A_{v} \\
& -\partial_{\varphi} \partial_{\mu}+i g \partial_{v} A_{\mu}+i g A_{\rho} \partial_{v}+i g A_{\rho} \partial_{\mu}+g^{2} A_{v} A_{\mu} \\
= & -i g\left(\partial_{\mu} A_{v}-\partial_{v} A_{\mu}-i g\left[A_{\mu}, A_{v}\right]\right) \\
= & -i g F_{\mu v}
\end{aligned}
$$

Can show (Ho) that $\delta F_{w v}=\left[i \alpha, F_{r v}\right]$, so Fro itself is not gauge invariant. However,

$$
\begin{aligned}
\delta\left(F_{n v} \cdot F^{\sim v}\right)=\delta F_{n} \cdot F^{\sim v}+F_{v v} \cdot \delta F^{\sim v}= & {\left.\left[i \alpha, F_{v v}\right] F^{\sim v}+F_{m v} C_{i \alpha}, F^{\sim v}\right] } \\
= & i \alpha F_{m v} F^{n v}-F_{v v}(i \alpha) F^{\sim v}+F_{n v v}(i \alpha) F^{m v} \\
\text { matrix product } & -F_{v v} F^{\sim v i} i \alpha
\end{aligned}
$$

One last trick: $\operatorname{Tr}(A B C \cdots)=\operatorname{Tr}(B C \cdots A)$. Trace is caclicull, invrriant, so by taking the trace, we can cancel te remaining terns and get a gauge- invariant object.

$$
\begin{aligned}
& \alpha_{s u(2)}=-\frac{1}{2} \operatorname{Tr}\left(F_{\mu v} \cdot F^{r v}\right) \\
& =-\frac{1}{4}\left(F_{m v}^{1} F^{r v 1}-F_{n v}^{2} F^{\sim v 2}-+F_{\sim v}^{3} F^{\sim v} \underline{3}\right) \text { because } \\
& \operatorname{Tr}\left(\left(\tau^{1}\right)^{2}\right)=\operatorname{Tr}\left(\left(\tau^{2}\right)^{2}\right)=\operatorname{Tr}\left(\left(\tau_{3}\right)^{2}\right)=\frac{1}{4} \operatorname{Tr}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\frac{1}{2} .
\end{aligned}
$$

This looks just like 3 copies of the Lagrassion for the ucla) gauge field, Gut hidden inside $F_{w} F^{n v}$ an interaction terms, ie.

$$
F_{\mu v}^{\prime} F^{\mu v 1} \supset A_{m}^{2} A_{v}^{3} \partial^{m} A^{\prime v}
$$

The gauge field interacts with itself!
Let's switch to starlad notation and call the su(2) game fled W and the U(1) gauge Field B. We can also relabel be coupling ga $\rightarrow g^{\prime} y$ (will see uh next week);

$$
\begin{aligned}
D_{\mu} \Phi & =\left(\partial_{\mu}-i g^{\prime} y B_{\mu}-i g W_{\mu}^{a} \tau^{a}\right) \Phi \\
\mathcal{L}_{\Phi, \text { gamed }} & =\left|D_{\mu} \Phi\right|^{2}-M^{2} \Phi^{+} \Phi-\lambda\left(\Phi^{+} \Phi\right)^{2}-\frac{1}{4} B_{\mu \nu} B^{\mu v}-\frac{1}{4} W_{m \nu}^{2} W^{\mu v a}
\end{aligned}
$$

This completes ore port of our desired classification:
a Lagrartion describing a spins particle of mass m invariant under Poincare transformations and the (gauged) internal symmetries $U(1)$ and $S U(2)$. This description requires us to pick the representations of $u(1)$ and su(2) on Φ : The former is parametrized by a number Y, and k latter is a choice of cepreseration matrices, where we have chosen be 2-dimensional rep using the Pauli matrices, The Lagarion has 区 and W sut-interactions, as well as I-W and I- B interactions.

