Representations of the Poincaré group

epresentations of the Poincaré group
constations in space and time, Theory
group too; \mathbb{R}^4 , since we can write
rector. The world has more symmetries than just Lorentz transformations! translations in space and time . These translations form a group too; \mathbb{R}^4 , since we can write $x^m \rightarrow x^m + \lambda^m$ as a 4-vector.

Consider translations with rotations and boosts? Have to be
\na bit careful because transitions and voltators don't commute.
\nCorrect structures is a semi-disect product: if
$$
\alpha
$$
 and β
\nand translative is a semi-disect product: if α and β
\nand $\Lambda_{1,1}$ are Lavatz transportions,
\n $(x, \Lambda_{1}) \cdot (\beta, \Lambda_{2}) \equiv (x + \Lambda_{1,1} \cdot \rho, \Lambda_{1,1} \cdot \Lambda_{2}) \equiv (x + \Lambda_{1,2} \cdot \rho, \Lambda_{1,1} \cdot \Lambda_{2}) \equiv (x + \Lambda_{1,1} \cdot \rho, \Lambda_{1,1} \cdot \Lambda_{2}) \equiv (x + \Lambda_{1,1} \cdot \rho, \Lambda_{1,1} \cdot \Lambda_{2}) \equiv (x + \Lambda_{1,1} \cdot \rho, \Lambda_{1,1} \cdot \Lambda_{2}) \equiv (x + \Lambda_{1,1} \cdot \rho, \Lambda_{1,1} \cdot \Lambda_{2}) \equiv (x + \Lambda_{1,1} \$

$$
Play in expansion of A, isolate O(E) terms as before:($J^{\rho} + E w^{\rho}_{n}$)($J^{\sigma} + E w^{\sigma}_{n}$) $\eta_{\rho\sigma} = \eta_{\mu\nu}$
$$

$$
(\int_{\rho}^{\rho} + \mathcal{L} \, w_{n})(\partial_{\nu}^{0} + \mathcal{L} \, w_{\nu})\eta_{\rho\sigma} = \eta_{\mu\nu}
$$

$$
\eta_{\rho\sigma} + \mathcal{L} \left(\int_{\rho}^{\rho} w_{\sigma}^{\sigma} + \mathcal{L} \, \sigma \, w_{n}^{\rho} \right) \eta_{\rho\sigma} + \mathcal{O}(\mathcal{L}^{2}) = \eta_{\mu\nu}
$$

(use $\gamma_{\rho\sigma}$ to lower indices) t ($\int_{n}^{\rho} w_{\rho\sigma} + \int_{\rho}^{\sigma} w_{\sigma n}$) = 0

$$
E > \boxed{w_{nv} + w_{v,n} = 0}
$$
, so w_{nv} is an antisymmetric tensor
w / 6 in dependent components: 3 bursts and 3 rotations.

NOTE
$$
P_{0} = P_{0}
$$
 and P_{0} is only antisymmetric and both its radius (in the two) in the complex height of the A and A and A are not in the complex height of the $X = \frac{1}{r} w_{10} M^{\circ r} = -i \left[w_{10} M^{\circ r} + w_{11} M^{\circ r} + w_{12} M^{\circ r} + w_{11} M^{\circ r} + w_{12} M^{\circ r} + w_{13} M^{\circ r} + w_{14} M^{\circ r} + w_{15} M^{\circ r} + w_{16} M^{\circ r} + w_{16} M^{\circ r} + w_{17} M^{\circ r} + w_{18} M^{\circ r} + w_{19} M^{\circ r} + w_{18} M^{\circ r} + w_{19} M^{\circ r} + w_{18} M^{\circ r} + w_{19} M^{\circ r} + w_{19} M^{\circ r} + w_{19} M^{\circ r} + w_{19} M^{\circ r} + w_{10} M^{\circ r} + w_{10} M^{\circ r} + w_{11} M^{\circ r} + w_{$

Now let's include transformations to get the whole Poincavé graph 8
\n
$$
x^{m} = x^{m} + \lambda^{m} \text{ on } b^{m}
$$
\n
$$
\begin{pmatrix}\n1 & \lambda^{n} \\
1 & \lambda^{n} \\
0 & 0 & 0\n\end{pmatrix}\n\begin{pmatrix}\nx^{0} \\
x^{1} \\
x^{2} \\
1\n\end{pmatrix} = \begin{pmatrix}\nx^{0} + \lambda^{0} \\
x^{1} + \lambda^{1} \\
x^{2} + \lambda^{2}\n\end{pmatrix} \quad \text{(this is called an affine transform for)}
$$

50 a quent Poincaré element (Lorentz + translation) can be represented as $(\lambda, \Lambda) = (\Lambda, \Lambda)$

$$
(\lambda_{1,1}\Lambda_{1})\cdot(\lambda_{2,1}\Lambda_{2})=\left(\begin{array}{c}\Lambda_{1,1}\Lambda_{1}\\-\sigma_{1,1}\\-\sigma_{1,1}\end{array}\right)\left(\begin{array}{c}\Lambda_{2,1}\Lambda_{2}\\-\sigma_{2,1}\\-\sigma_{2,1}\end{array}\right)=\left(\begin{array}{c}\Lambda_{1}\Lambda_{2,1}\Lambda_{2}\\-\sigma_{1,1}\\-\sigma_{1,1}\\-\sigma_{1,1}\end{array}\right)
$$

Infinitesimal translation is
$$
5.5611
$$
 a vector, let's call it P^* :

\n
$$
P^0 = -i \begin{pmatrix} 0 & \frac{1}{6} \\ -\frac{1}{10} & \frac{1}{10} \end{pmatrix}, P^1 = +i \begin{pmatrix} 0 & \frac{1}{6} \\ -\frac{1}{6} & \frac{1}{10} \end{pmatrix}, e^+t
$$
\nwhere Q is the row index of the 5.

\n
$$
[P^M, P^V] = D [HW]
$$
\nLet Q^M and Q^V are the sum index of the 5.

One last commutation relation to compute!

$$
\begin{bmatrix} M^{nv}, P^{or} \end{bmatrix}^{\alpha} = \begin{pmatrix} (M^{rv})^{\alpha} \\ - \frac{1}{0} & - \frac{1}{0} \end{pmatrix} \begin{pmatrix} 0 & i(P^{r})^{\beta} \\ - \frac{1}{0} & - \frac{1}{0} \end{pmatrix} - \begin{pmatrix} 0 & i(P^{r})^{\beta} \\ - \frac{1}{0} & - \frac{1}{0} \end{pmatrix} \begin{pmatrix} (M^{rv})^{\alpha} \\ - \frac{1}{0} & - \frac{1}{0} \end{pmatrix}
$$

=\begin{pmatrix} 0 & |(M^{rv})^{\alpha} \\ - \frac{1}{0} & - \frac{1}{0} \end{pmatrix} \begin{pmatrix} 0 & P^{r} \text{ trains like } \alpha \\ 4 - \text{ vector, } \alpha \text{; if should} \end{pmatrix}

So the commutator is a pure translation (Lorentz part is 0)

Compute the coefficient:
\n
$$
i(\gamma^{mx}J_{\beta}^{v} - \gamma^{vx}J_{\beta}^{c})(-i\gamma^{\sigma\alpha}) = i(\gamma^{v\sigma}(-i\gamma^{n\alpha}) - \gamma^{n\sigma}(-i\gamma^{v\kappa}))
$$

\n $= i(\gamma^{v\sigma}(\beta^{v})^{a} - \gamma^{n\sigma}(\beta^{v})^{x})$

 \Rightarrow $[M^{mv}, P^{\sigma}] = i(\eta^{v\sigma}P^m - \eta^{n\sigma}P^{\sigma})$

We now have the complete commutation relations for the Lie algebra of the Poincaré group'

$$
[M^{nv},M^{pv}] = i (M^{v\rho}M^{nv\rho} + M^{w\rho}M^{v\rho} - M^{n\rho}M^{v\rho} - M^{v\rho}M^{v\rho})
$$

\n
$$
[M^{nw},P^{v\sigma}] = i(\gamma^{v\sigma}P^{m} - \gamma^{n\sigma}P^{v})
$$

\n
$$
[P^{m},P^{v}] = O
$$

Note that while we derived these using ^a particular ⁵×⁵ representation of tie tie algebra, they hold in general as abstract operator relations. Just like with the Lorentz group, we will now systematically Construct the representations of this group. $[$ (P^m, P^v) =
 $[$ ₀ te that while
 $\frac{1}{2}$ the lit algebrand the like with
 $\frac{1}{2}$ asinic operatory
 $\frac{1}{2}$ asinic operatory
 $\frac{1}{2}$

Casimir operators

Now that we have the algebra, what can we do with it? Now that we have the algebra, what can we do with it
If we find an object that commutes with all generators, a theorem from math tells us it must be proportional to the idutity operator on any irreducible representation. This is called a Casimir operator. Irreducible ⇐> can't write as block-diagonal like $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$

Here's one Casimir operator:
$$
p^2 = p^m p_m
$$
. $logF$.
\n $[p^m, p^m] = 0$ since all p^1 s commute
\n $[p^m, m^{nv}] = p^m [p^m, m^{nv}] + [p^m, m^{nv}]p^m (usp_0 (ab, c) = A[B, c] + [A, c]B)$
\n $= p^m (-i(\sigma^v, p^m - \sigma^v)) - i(\gamma^{v}p^m - \gamma^{v}p^v)p^m)$
\n $= i(p^m p^v - p^v p^w) + i(p^m p^v - p^v p^w) = 0$
\n $(which had to be true: m^{nv} is antisymetric in xy, and since$
\n $(m, p) \propto p$, could only have a commutator (ke, pp. which

is symmetric in n, v) z) on an irreducible rep., β <u>,</u> acts as a constant times the identity opera to- . Let's call tie constant ^m - : we will soon identify it with the physical (squared) mass of a particle.

The Poincaré algebra has a second Casinir, but it's a bit less transparent. Let's define $W_{\sigma}=\frac{1}{2}\epsilon_{\mu\nu\rho\sigma}M^{\mu\nu}\rho^{\rho}$ (Pauli-Lubanski pseudovector) $\epsilon_{\sf wvpo}$ is the totally antisymmetric tensor with $\epsilon_{\sf o_{123}}$ = -). We will see that W is related to a particle's spin. First, some useful observations :

- W is orthogonal to P , $W_{\sigma}P^{\sigma} \propto \epsilon_{\rho\sigma} P^{\rho}P^{\sigma} = O$ by artisymmetry of E.
- ^r W and P commute, so we can label reps. by both their eigavals. \ddot{o}

 $\left[W_{\alpha}\right]$ $\rho^{\sigma}\right] =$ = $\frac{1}{2}$ Envpa(nvopn - ynopu)po ⁼ 0 , again by antisymmetry.

Now, Consider some state
$$
|k^2\rangle
$$
 which is an eigenvector of $\frac{|\cdot|}{|\cdot|}$
\n ρ^m w/eigenvalue k^m , we will see next week that such states
\ndiscchic particles of definite momentum. ρ^m acts as $k^m k_m = m^m$,
\nso added, for a massive particle, ρ^m acts as the identity on
\nall states $|k^m\rangle$ related by Lorentz transformations.
\n $\beta_{\alpha\beta} + \beta_{\alpha\beta} = \frac{1}{k} E_{jko}$, $M^{\lambda\lambda} \rho^{\alpha\beta} k \rangle = (m, \alpha, \alpha, \beta, \gamma, \delta)$
\n $\beta_{\alpha\beta} + \beta_{\alpha\beta} = \frac{1}{k} E_{jko}$, $M^{\lambda\lambda} \rho^{\alpha\beta} k \rangle = m (\frac{1}{k} E_{\alpha_{ijk}} M^{\lambda\beta}) |k\rangle = -m\overline{J} |k\rangle$
\nAs you recall from $(M, j^m \equiv \overline{J} \cdot \overline{j} = S(s+1)$ is indeed a multiple
\nof the identity with coefficient given by the particle is spin-s, so
\nthe same should hold true for $W^m = -(W \cdot \overline{W}) = -m^m \overline{J} \cdot \overline{J}$.
\n ρ^m with in any works if $m > 0$!! will come back to $m = 0$.
\n ρ^m with W^m is small, so $(M, \rho^m) = 0$, so $(k\alpha, \beta, (k^m, \rho^m) = 0$.
\n ρ^m with W^m is located, shown $(M, \rho^m) = 0$, so $(k\alpha, \beta, (k^m, \rho^m) = 0$.
\nBut W^m is located, shown $(k^m, \rho^m) = 0$.
\n Γ this argument has been shown in Γ with Γ

check explicitly that $\mathsf{L}W$, M^{uv}] = 0 using the Poincaré algebra.

Next time : physical interpretation