
QEuarks
We will now augment the QED Lagrangian with the remaining fermions

,

3

L ) { Qtr -0
- Dn Qf + uÑ+o^DnFrtdr*o^DndÑ - Yi?Qtiltdr; -Yi;"aiÑuµ.

f-=\

Just like in QED
,

where It → ( E ) and leptons got mass and electric

charge
,
same thing happens Fo- quarks

'

.

Yi;D Qt; Hdr ; → Mdf ditdrf

%iQ+iÑur ; → mufuitur
Recall hyperhazes ? Y = % Fo- Q

,

Y= Eg Fo- un , Y=
- f Fo-da

I + I = =3 , ULElectric chaise is T3 + Y =

{ ¥+1, = -1, ,
du

O t Eg = Eg ) he

0 + f-5) = - t , dr

⇒ in the standard model
, up

- type quarks are charge } fermions
,down - Gpe quarks are charge -1g . We will describe experiments which

test both spin and charge .

Note : quarks also interact with such, gauge Field ! we will add

th ? back in shortly .

⇒ Lynn, = É ( ñf fix + Felt/ ur-tdr-lix-te.tt/1d-r-mufur-uf-mafdr-dr-)f-. I

Only new Feynman rule is facto- of Eg or Ig on quark -quark - photon
vertex

.

Let's use QED to test the predicted properties of quarks



Afii→hde .
£

Some jargon :
"

hadrons
"
= any strongly

- interacting particles. Pions
,

kaons
, protons, neutrons, - .

-
these are what are actually

0b¥ in experiments .

Free quarks are not observed !

(more on this in PHYS 570 and next lecture)

once '_
e-→ hadrons)

We will compute R =¥÷,
as a function of

Fs = Ecm
, approximating the numerator by or (ete-→ 95) .

In the following weeks we will discuss the transition from

quarks to hadrons
.
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In limit where all particles are massless, these diagrams we
do

identical up to e.→Q ; e. ago
~ It cos -0

,
just like ntii !

Experimental confirmation that quarks are spin -
'
in.

⇒ once +e-→ all quarks)= 3 ✗ EQ? or lete-→anti )
9 i

quarks are a
3-component vector

under SUCH

Mut 2 MeV, mat 5 MeV, mst too nev, but me
=\-5 GeV

,

so

for fg t GeV
,

not enough energy to produce CI

⇒ Rvs -- loev ) =3 ( ( E.)
'

+ (-15+1-1,5)=2
q=u q=d 9--5

Well -matched by experiment ! Experimental confirmation that quake have 3
colors
, and that quarks have fractional charges .



QCD at colliders 3L
-

Add back in two more terms from the Sm Lagrangian

L ) - ¥ GIG
" "

+ £ { I;Ñi;iX +go.tt/aT?;-mroi;)tii,j--
I
F

"
- ÉCLAT -LAI +gsf

" -

An
' Ai] : Ai is the glu Field

The crucial difference between QED and QCD is the gluon-self-i-ea.tn .

This leads to interesting phenomena :

• Asymptotic freedom .

At high energies, the strong force coupling .gs
gets weaker.

This means we can borrow many of our results from

QED and tack on some group theory factors to get the right answer
.

• At lower energies, gluons make more gluons , and the interaction strength

is large
.

710

e-
→
Tsn →¥§) so

9 9

2zz- g-+

single quark gluon splitting Jet

Instead of free quarks, what we see at colliders is a spray of

nearly - collimated hadrons
,
called a jet. The evolution from

quark to jet is calculable as long as ✗ssl ; more on this in PHYS 570 .

• At an enemy of about 200 MeV, 4=-9%-1--1
,
so perturbation

theory based on Feynman diagrams breaks down .

Two options for

calculating in a non perturbative field theory :

- discretion spacetime or a finite lattice and use a

computer ( lattice gauge theory) ← Prof. El- Khuda does this

-

use symmetry argument to find a change of variables

to describe some subset of the particles at low energy

( chiral perturbation theory
← we will briefly do this next week

we will focus on the high-energy part of this sequence in this course
,

leaving the lower- energy phenomena for PHYS 570.



Group theory review 4L
-

First we review some group theory facts about SUCN ) where N=3 .

• Such is 8 - dimensional ! Utu = # enforces 9 algebraic constraints

on 9 complex 118 real ) numbers; requiring def U = 1 enforces one more .

- By writing U=I+iX, we find (I - i ✗ +K# tix ) -

-I => ✗
+

= ✗ +047

Similarly
,

def U = I =3 THX) = 0 ( we showed this in week 3)
.

So Lie algebra smh) is traceless Hermitian 3×3 matrices
.

Conventional to choose the generators T
"
= It

"

,
a =L, . . . 8

,
where

✗
•

are the Gell-Mann matrices (see Schwartz 125.17 ) ) .

• The structure co-starts of smh) are defined by [Ta, T
' ]=ifakTc

.

• Just like for such and 5013,11
,
there are multiple reptro→

of the group . There is a very neat
mathematical generalization

of the raising/ lowering operator trick to Find these representations
,

but we will focus on two : the Fu¥al 3-dimensional

representation, and the adjoint 8 -dimensional rep .

• The fundamental rep is straightforward ! 1T¥ ; ; = II;; .

The

generators are 3×3
matrices

,
and they satisfy

Tr ( Tat
.

) = T?;T; ; = Jab
.

Fo- Lie algebras
,
taking the trace

F F

acts like an inner product (for math nerds, this is known as the

Killington ) . The coefficient is TF -='z. We can also
sum over generators ?

§(TETE) ; ; = Cedi; , where G- = N~= Iz is the quadratic

Casimir in the fundamental representation
.
Exacts analogous to

j
-

= E) ij = 51st 1)Ifor spin Suez) .
Quarks are vectors in

the fundamental representation , and transform as

4. → titi ✗
"

1T¥) ;;tj . Antiquaries ( tutor F) transform as

I ; → Ii - i ✗
" F; (TI ); ; (roti.

Q
, ur , dr are all in the same representation,

which is why we can use 4-component spinors which combine U
,
and ur)



• The adjoint rep . is a representation of the Lie algebra £
oelF.

(This sounds weird and mysterious the first time

you hear
it
,
but it's the simplest way of stating it. )

what is a representation? V→ V
'

, meaning a vector
✓

gets mapped to a vector V
'

under a Lie algebra element T .

But this is precisely what the
commutation relations do !

Ta ifaktc
,
where the map is [ Ta

,

T
'

]
.

Because Tc is a linear combination
of the other generators

,
we

must be able to write this map as an 8×8 matrix a;) , , ,

whose entries are (Taa,;) ,c= if
"'

.

The inner product for the adjoint is
Tr ( Tsai .TL,;) = { facdfbcd= NJab

The quadratic Casimir is {Tag.IT?.h---Efbadfdac=Efbadfcad=NJY
a

so TA = CA =3 .

Gluons are vectors in the adjoint representation :

Abn → A) + isn't:D;), , A 'm + ¥2K

<⇒ Aan → AI - F
"-

✗
•

A'm + g÷2✗
"

with this group theory technology , we can now write down the

Feynman rules for QCD
'

.

v ; 6 Mmm; a = _i gate (gluon is just like photon with a J
"

Fo- color

p in adjoint rep.)

j 9-i = i(pP+ dii (quarks are just like electrons with J
"
for color

p
in Fundamental rep. )

s
n; a

room
= igo.TT?; (order matters because Tai; is a matrix ! )

i

so Far
,
so good .

.
. now comes the mess.



i. • smirky
" " 6L

p→ a
= gsf

" - [y~lk-ppi-zmcp-qftzmlq.ie)
"

]

pic
min i. 6

=
- ig,
-[fate

- f-del Mur_ ~ ve) + (2 permutations]2µg 7 7 17

p:c o;D

Even computing gq → 99 requires 1000 terms ! We will not
do this

in this class
,

but there is a beautiful mathematical formalism

which simplifies things enormously ( see Schwartz
Ch . 27 if you're curious) .

Asymptolicfreedom

In QED
,

1- loop diagrams like
Ñm!_ lead to

£
Vacuum polarization .

Just like a dielectric screens electric charge

aÉÉ
,

virtual et/e- pairs screen coupling e such

that M dyne = ¥j , where mis an energy scale
. The RHS is

known as the beta function of QED, and because it is positive,
e increases uitnireiryn .

In QCD
,
the opposite happens . Diagram , like

mBMBmn
lead to anti - screening , such that

M%9s= _%÷[¥4. - Firle ] . (Nobel prize 2004! )
For SUCH with six quark flavors, nf=

6
, ↳ =3, TF =L, so RHS is

-gi
Tart (3) - F. (E) 16 )) =

- 7%3
⇒
< 0
,
so 9s dses as

µ increases . This is known as asynptofeefom , and is why
we can approximate quarks as weakly - interacting and use
perturbative QFT at high energies, where ✗stool .


