QED with quarks
We will now augmat the QED Lagrangian with the remaining fermions,

$$
\alpha \supset \sum_{f=1}^{3} Q_{+}^{+} \bar{\sigma}^{m} D_{m} Q_{f}+u_{R}^{++} \sigma^{m} D_{\mu} u_{k}^{+}+d_{R}^{+4} \sigma^{\mu} D_{\mu} d_{k}^{+}-y_{i j}^{\alpha} Q_{i}^{+}+d_{R j}-y_{i j}^{n} Q_{i}^{+} \hat{H}_{k j}
$$

Just like in QED, where $H \rightarrow\binom{0}{v}$ and leptons got mass add electric charge, same thing happens for quarks:

$$
\begin{aligned}
& y_{i j}^{A} l_{i}^{+} H d_{R_{j}} \rightarrow m_{d_{f}} d_{L}^{+}{ }_{d}^{+} d^{+} \\
& y_{i j}^{u} d_{i}^{+} \tilde{H} u_{R_{j}} \rightarrow m_{u_{f}} u_{L}^{+} u_{k}^{+}
\end{aligned}
$$

Recall huperhages: $y=\frac{1}{6}$ for $a, y=\frac{2}{3}$ for $u_{R}, y=-\frac{1}{3} f_{0}-d_{k}$

$$
\text { Electric chare in } T_{3}+y=\left\{\begin{array}{l}
\frac{1}{2}+\frac{1}{6}=\frac{2}{3}, u_{L} \\
-\frac{1}{2}+\frac{1}{6}=-\frac{1}{3}, d_{L} \\
0+\frac{2}{3}=\frac{2}{3}, u_{R} \\
0+\left(-\frac{1}{3}\right)=-\frac{1}{3}, d_{R}
\end{array}\right.
$$

\Rightarrow in the Standard Model, up-tipe quarks are chare $\frac{2}{3}$ fermions, down-tipe quarks are charge $-\frac{1}{3}$, we will describe experiments which test both spin and charge.
Note: quarks also interact with su(3), gauge Field, un will add this back in shortly.

$$
\Rightarrow \alpha_{q \text { quarks }}=\sum_{f=1}^{3}\left(\bar{u}_{f}\left(i \delta+\frac{2}{3} e A\right) u_{f}+\bar{d}_{f}\left(i \gamma-\frac{1}{3} e \not A\right) d f-m_{u_{f}} \bar{u}_{f} u_{f}-m_{a f} \bar{d}_{f} d_{f}\right)
$$

Only new Feynman rule is fetor of $\frac{2}{3}$ or $\frac{-1}{3}$ on quark-quark-photin vertex.

Let's use QED to test the predicted properties of quarks.

A first glimpse of quarks: $e^{+} e^{-} \rightarrow$ hadrons.
Some jargon: "hadrons" = any strogly-intracting particles. Pions, kaons, protons, neutrons,... These ore what are actually observed in experiments. Free quarks are not observed! (More on this in PHys s>0 and next lecture)
We will compute $R=\frac{\sigma\left(e^{+} e^{-} \rightarrow \text { hadrons }\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)}$as a function of $\sqrt{s}=E_{c_{m}}$, approximating the numerator by $\sigma\left(e^{t} e^{-} \rightarrow 9 \bar{q}\right)$.
In the following weeks we will discuss the transition from quarks to hadrons.

vs.

In limit where all particles are massless, these diagrams are identical up to $e \longrightarrow Q_{i} e . \quad \frac{d \sigma}{d \cos \theta} \sim 1+\cos ^{2} \theta$, just like $\mu^{+} \mu^{-}$!
Experimental confirmation that quarks are spin -1/2.

$$
\Rightarrow \sigma\left(e^{+} e^{-} \rightarrow \text { all quarks }\right)=\sum_{\substack{\text { quark are a } \\ \text { quarkurat rector } \\ \text { under suck } 3)}} \quad \sum_{i} Q_{i}^{2} \sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)
$$

$m_{u} \approx 2 \mathrm{MeV}, m_{d} \approx 5 \mathrm{meV}, m_{s} \approx 100 \mathrm{meV}$, but $m_{c} \approx 1.5 \mathrm{GeV}$, so For $\sqrt{s} \approx G e V$, not enough energy to produce $C \bar{C}$

$$
\begin{array}{r}
\Rightarrow R(\sqrt{s}=1 \text { Gev })=3\left(\left(\frac{2}{3}\right)^{2}+\left(-\frac{1}{3}\right)^{2}+\left(-\frac{1}{3}\right)^{2}\right)=2 \\
q=u \quad q=d \quad q=s
\end{array}
$$

well -matched by experimat! Experimatal confirmation that quark have 3 colors, and that quarks have fractional charges.
$Q C D$ at colliders
Add back in two more terms from the SM Lagrangian

$$
\begin{aligned}
\alpha \supset & -\frac{1}{4} G_{m i}^{a} G^{m v a}+\sum_{i, j=1}^{N} \sum_{f} \Psi_{i}^{+}\left(\delta_{i j} i \gamma+g_{j} A^{a} T_{i j}^{a}-m_{f} \delta_{i j}\right) \psi_{j}^{+} \\
& -\frac{1}{4}\left(\partial_{\mu} A_{v}^{a}-\partial_{v} A_{n}^{a}+g_{j} f^{a a c} A_{m}^{b} A_{v}^{c}\right)^{2}: A_{m}^{a} \text { is ne glued field }
\end{aligned}
$$

The crucial difference between $Q E D$ and $Q C D$ is the gluon self-interaction.
This leads to interesting phenomena:

- Asymptotic freedom. At high energies, the strong force coupling gs gets weaker. This means we con borrow many of ow results from QED and tack on some group Nears factors to get the right answer.
- At lower energies, gluons make more plums, and be interaction stress is lars.

Single quark

jet
Instead of free quarks, what we see at colliders is a spray of nearly-collimated hadrons, called a jet. The evolution from quark to jet is calculable as long as as <1; more un this in PHys $5>0$.

- At an energy of about $200 \mathrm{meV}, \alpha_{s} \equiv \frac{9_{s}^{2}}{4 \pi}=1$, so perturbation theory based on Feynman diagrams breaks down. Two options for calculating in a nomperturbative field theory:
- discretize spacetime on a finite lattice and use a computer (lattice gauge theory) \leftarrow Prot. El-khadra does this
- use symmetry arguments to find a change of variables to describe some subset of the particles at low enemy (chiral perturbation theory) \&we will briefly do this next week
we will focus on the high-eresy part of this sequence in this course, leaving the lower-energs phenomena for PHYS $5>0$.

Group theory review
First we review some group theory facts about SU(N) where $N=3$.

- Su(3) is 8 -dimensional: $u^{+} u=\mathbb{1}$ enforces 9 algebraic constraints on 9 complex (18 real) numbers, requiring dot $u=1$ aforcos one more. By writing $u=\mathbb{1}+i x$, we find $\left(\mathbb{1}-i x^{+}\right)(\mathbb{1}+i x)=\mathbb{1} \Rightarrow x^{+}=x+\theta\left(x^{2}\right)$ Similarly, deft $u=\mathbb{1} \Rightarrow \operatorname{Tr}(x)=0$ (we showed this in week 3). So Lie algebra su(3) is traceless Hermitian 3×3 matrices. Conventional to choose the generators $T^{a}=\frac{1}{2} \lambda^{a}, a=1, \ldots 8$, where λ^{a} are the Gell-Mann matrices (see Schwartz (25.17))
- The structure constants of $3 u(3)$ are defined by $\left[T^{a}, T^{b}\right]=i f^{a b c} T^{c}$.
- Just like for Su(2) and SO (3,1), there are multiple representations of the group. There is a very neat mathematical generalization of the raisin,llowering operator trick to fond these representations, but we will focus on two: the fundamental 3-dimensional representation, and the adjoint 8 -dimasional rep.
- The fundamental rep is straightforuad. $\left(T_{F}^{a}\right)_{i j}=\frac{1}{2} \lambda_{i j}^{a}$. The gerentors ore 3×3 matrices, and they satisfy
$\operatorname{Tr}\left(T_{f}^{a} T_{F}^{b}\right) \equiv T_{i j}^{a} T_{j i}^{b}=\frac{1}{2} \delta^{a b}$. For Lie algebras, takin, to trace acts like an inner product (for math nerds, this is known as the Killing form). The coefficient is $T_{F} \equiv \frac{1}{2}$. We con also sum over creators?:
$\sum_{a}\left(T_{F}^{a} T_{F}^{a}\right)_{i j}=C_{F} \delta_{i j}$, where $C_{F}=\frac{N^{2}-1}{2 N}=\frac{4}{3}$ is the quadratic Casimir in the fundamatal representation. Exact y analogous to $J^{2}=\sum J^{i} J^{i}=s(s+1) 1$ for spin Su(2). Quarks are vectors in the fundamental representation, and transform as $\psi_{i} \rightarrow \psi_{i}+i \alpha^{a}\left(T_{F}^{a}\right)_{i j} \psi_{j}$. Antiquarks $\left(\psi^{+}\right.$or $\left.\bar{\psi}\right)$ transform as $\bar{\psi}_{i} \rightarrow \bar{\psi}_{i}-i \alpha^{a} \bar{\psi}_{j}\left(T_{F}^{a}\right)_{j i} \quad\left(\right.$ Note: Q, u_{R}, d_{R} are all in the same representation, which is why we con use 4-componet spinous which combine u_{L} al luke)
- The adjoint rep. is a representation of the Lie algebra on itself. (This sounds weird and mysterious the first time you hear it, but it's the simplest way of stating it.)
What is a representation? $V \xrightarrow{T} V^{\prime}$, meaning a vector V get napped to a vector V^{\prime} under a lie algebra ecervent T. But this is precisely what the commutation relations do!
$T^{a} \xrightarrow{T^{b}}$ if ${ }^{a b c} T^{c}$, where the map is $\left[T^{a}, T^{b}\right]$.
Because T^{c} is a linear Combination of the other generators, we must be able to write this map as an 8×8 matrix ($\left.T_{\text {adj }}\right)_{\text {le }}$, whose entries are $\left(T_{a j 1}^{a}\right)_{b c}=$ if $f^{\text {bach }}$.
The inner product for The adjoint is $\operatorname{Tr}\left(T_{a s_{j} .} T_{a d j}^{b}\right)=\sum f^{a c d} f^{b c d}=N \delta^{a b}$ The quadratic Casimir is $\sum_{a}\left(T_{a j_{j}}^{a} T_{a j)}^{a}\right)_{c}=-\sum f^{b a d} f^{d a c}=\sum f^{b a d} f^{c a d}=N \delta^{b c}$, so $T_{A}=C_{A}=3$.
Gluons are vectors in the adjoint representation:

$$
\begin{aligned}
& A_{\mu}^{b} \rightarrow A_{\mu}^{b}+i \alpha^{a}\left(T_{a d j}^{a}\right)_{b c} A_{\mu}^{c}+\frac{1}{g_{s}} \partial_{\mu} \alpha^{b} \\
& \Leftrightarrow A_{\mu}^{a} \rightarrow A_{\mu}^{a}-f^{a b c} \alpha^{b} A_{\mu}^{c}+\frac{1}{g_{s}} \partial_{\mu} \alpha^{a}
\end{aligned}
$$

with this group theron technology, we can now write down the Feynman rues for $Q C D$:
$\underset{p, i \sin \mu i, a}{\sin }=\frac{-i \eta^{\mu V}}{p^{2}} \delta^{a b} \underset{\text { (gluon is just like photon with a } \delta^{a b} \text { forcober }}{\text { in adjoint rep.) }}$ $\overrightarrow{\vec{p}} i=\frac{i(p+n)}{p^{2}-m^{2}} \delta^{i j} \begin{gathered}\text { (quarks are just like electing with } \delta^{i j} \text { for color } \\ \text { in Fundamental rep.) }\end{gathered}$ λ_{i}^{j} mora $^{j}=i g_{s} \gamma^{n} T_{i j}^{a}$ (order matters because $T_{i j}^{a}$ is a matrix!)

So far, so sod... now comes the mess.

Even computing $99 \rightarrow 99$ requires 1000 terms! We will not do this in this class, but there is a beautiful mathematical formalism which simplifies things enormously (see schwartz Ch. 27 it yourecarions).

Asymptotic freedom
In QED, 1-loop diagrams like
 vacuum polarization. Just like a dielectric screes electric charge at long distances, virtual e^{+} / e^{-}pairs screen coupling e such that $\mu \frac{d}{d \mu} e=\frac{e^{3}}{12 \pi^{2}}$, where μ is an energy scale. The RHS is known as the beta function of QED, and because it is positive, e increases with increasing μ.
In QCD, the opposite happens. Diagrams like lead to anti-screening, such that

$$
\mu \frac{d}{d \mu} g_{S}=\frac{-g_{S}^{3}}{16 \pi^{2}}\left[\frac{11}{3} C_{A}-\frac{4}{3} n_{F} T_{F}\right] \text {. (Nobel(prize 2004!) }
$$

For SU(3) with six quark flavors, $n_{f}=6, C_{A}=3, T_{F}=\frac{1}{2}$, so $R H$ is $\frac{-9 s^{3}}{16 \pi^{2}}\left(\frac{11}{3}(3)-\frac{4}{3}\left(\frac{1}{2}\right)(6)\right)=-\frac{79 s^{3}}{16 \pi^{2}}<0$, so gs decreases as μ increases. This is known as asymptotic freedom, and is why we can approximate quarks as weakly-interacting and use perturbative QFT at high energies, where $\alpha_{s} \approx 0.1$.

