Relativity review
Units in this class are "natural units": $\hbar=C=1$. In the SI system of units, there are three dimeasionful quantities (mass, length, time), but relativist, mixes length and time, and QM mixes energy and time from $E=\hbar w$. So natural units make these conversions easy by having only one dimensiontul quantity, mass (or energy, by $E=n c^{2}$). Dimarsions will be computed in powers of mas, and denoted $[\cdots]=d$.
Ex.

$$
\begin{aligned}
& {[m]=1} \\
& {[E]=\left[m c^{2}\right]=[m]=1} \\
& {[T]=\left[\frac{\hbar}{E}\right]=\left[E^{-1}\right]=-1} \\
& {[L]=[C T]=[T]=-1}
\end{aligned}
$$

Two useful conversion factors to get back to SI: $\hbar=6.58 \times 10^{-22} \mathrm{meV} \cdot \mathrm{s}$ $\hbar c=197 \mathrm{meV} \cdot \mathrm{fm}$
Recall that lorentz transformations are the set of linear coordinate transformations that lave the spacetime metric invariant. In this course, metric is $\eta_{v v}=\eta^{n v}=\operatorname{diag}(1,-1,-1,-1)$ so timelike 4 -rectors have positive invariant mass.
A loratz "boost" along the z-axis by velocity $|B|<1$ can be written as a matrix

$$
\Lambda=\left(\begin{array}{llll}
\gamma & 0 & 0 & \gamma \beta \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
\gamma \beta & 0 & 0 & \gamma
\end{array}\right) \text { where } \gamma=\frac{1}{\sqrt{1-\beta^{2}}}
$$

In this class, all transformations will be active, so acting on the 4 -momentum of a particle at rest, $\rho^{n}=(n, 0,0,0)$, gives $p^{\mu} \rightarrow(\gamma n, 0,0, \gamma \beta n)$. If $\beta>0, p^{\mu}$ is boosted to have $p^{3}>0$.

We can extract a couple useful facts from this calculation:.

- $E=r m$, so to find the lorentz factor for a massive particle, just divide its enemas by its mass.
- $|\vec{p}|=\gamma \beta m$, so $\beta=\frac{|\vec{p}| \text {. In this course we will a molt }}{E}$ never care about β, and will use r exclusively.
Recall $p^{2} \equiv p \cdot p \equiv\left(p^{0}\right)^{2}-\left(p^{1}\right)^{2}-\left(p^{2}\right)^{2}-\left(p^{3}\right)^{2}$ is invariant; same in any frame Comparing rest-fane $p^{m}=(n, \vec{O})$ to some other frame $p^{\prime \prime}=(E, \vec{p})$ gives $E^{2}=|\vec{p}|^{2}+n^{2}$ which we will use all the time.
Massless particles (e.g. photons) are described by lightlike 4 rectors with $p^{2}=0$, than $E=|\vec{p}| \quad($ and $\beta=1)$.
An easy way to immediately see that a quantity is lorentzinvariant is to use index notation. A lorenz teastormation Λ is a 4×4 matrix with entries $\Lambda_{v}^{M}, M, v=0,1,2,3$

$$
\text { Ex. } \quad \begin{aligned}
& \mu \\
& 0 \\
& 1 \\
& 2 \\
& 3
\end{aligned}\left(\begin{array}{cccc}
\gamma & 0 & 0 & \gamma \beta \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
\gamma \beta & 0 & 0 & \gamma
\end{array}\right)
$$

μ labels row, V labels column:
$n_{3}^{0}=n_{0}^{7}=r \beta$, etc.
Greek indices run from 0 to 3, Latin indices i, j, k, etc. run from 1 to 3
Covariant vectors V_{μ} tractor by matrix multiplication:

$$
V_{\mu} \xrightarrow{M} \Lambda_{\mu}^{v} V_{v} \quad(\equiv \Lambda \cdot v \text {, contact top matrix index })
$$

Note Einstein summation convention. sum over repeated upper/love indices. Contravariant vectors transform with the transpose of n :

$$
W^{\mu} \xrightarrow{n} \Lambda_{v}^{\mu} W^{v}\left(\equiv W \cdot \Lambda^{\top}\right. \text {, contract bottom matrix index) }
$$

can raise and lower indices (ie. convert covariant to contravaiant) by using the metric: $V^{n} \equiv \eta^{\mu v} V_{v}, W_{n}=\eta_{\mu v} W^{v}$. This is nice because we never have to keep track of transposes explicitly.

Lorentz transformations are defined to be those that preserve the metric: $\eta^{n v}=\Lambda^{\mu}, \Lambda_{\sigma}^{v} \eta^{\rho \sigma}$ or $\eta=\Lambda^{\top} \eta \Lambda$.
This implies that any quantity with all indices contracted is a Lorentz Scalar, ie. invariant.

Example: $\quad V_{\mu} W^{\mu} \equiv \eta_{\mu \nu} V^{\mu} W^{v} \equiv W \eta V=V \eta W$
perform lorentz trastomation Λ on both V and W;

$$
W \eta V \rightarrow\left(W \Lambda^{\top}\right) \eta(\Lambda v)=W\left(\Lambda^{\top} \eta \Lambda\right) V=W \eta^{-1} V=W \eta V
$$

Transposes and inverses are related by the metric preservation eq::

$$
\Lambda^{\top} \eta \Lambda=\eta \Rightarrow\left(\eta \Lambda^{\top} \eta\right) \Lambda=\eta \eta=\mathbb{1} \text {, so } \Lambda^{-1}=\eta \Lambda^{\top} \eta
$$

with indices, $\left(\Lambda^{-1}\right)_{v}^{N}=\eta_{\alpha v} \eta^{\beta M} \Lambda_{\beta}^{\alpha}$, but by the index raising/lowering rules, the RHS gets the same symbol Λ_{v}^{m}, so we don't have to keep track of inverses either.
To be clear, this is just notational simplicity: if we wanted to evaluate components of the inverse transformation for our boost, we could do so explicit: $\left(\Lambda^{-1}\right)_{3}^{0}=\eta_{\alpha} \eta^{B O_{0}} \Lambda_{3}^{\alpha}=\eta_{33} \eta^{00} \Lambda_{0}^{3}=-\gamma \beta$. But our notation means we don't have to distinguish between e.g. $\Lambda^{n}{ }_{v}$ and $\Lambda_{n} v$ as some texts do.

Check Lorentz invariance with index notation:

$$
V^{n} w_{m} \rightarrow \Lambda_{v}^{\mu} V^{v} \Lambda_{m}^{\rho} w_{\rho}=\left(n^{-1}\right)_{V}^{\mu} \Lambda_{\mu}^{\rho} V^{v} w_{\rho}=\delta_{v}^{\rho} V^{v} w_{\rho}=V^{\rho} w_{\rho}
$$

Tensors have more than one index: each lower index transforms with a factor of Λ, each upper index w / Λ^{\top}
eq. $T_{\mu \nu} \rightarrow \Lambda_{\mu}^{\alpha} \Lambda_{v}^{\beta} T_{\alpha \beta}$

$$
S_{\rho \sigma}^{m} \rightarrow \Lambda_{\rho}^{\alpha} \Lambda_{\sigma}^{\beta} \Lambda_{\gamma}^{\mu} S_{\alpha \rho}^{r}
$$

With index notation, we know that a quantity like $T_{\sim v} T^{n v}$ is invariant under Lorentz transformations just by looking at it,

Ore last piece of rotation:
$\partial_{\mu} \equiv \frac{\partial}{\partial x^{m}} \equiv\left(\partial_{0}, \partial_{1}, \partial_{2}, \partial_{3}\right)$ is "naturals" a covariant rector, While x^{m} is "naturally" contravaricent,

$$
\partial^{\wedge} \partial_{\mu} \equiv \eta^{m v} \partial_{\mu} \partial_{v}=\left(\partial_{0}\right)^{2}-\left(\partial_{1}\right)^{2}-\left(\partial_{2}\right)^{2}-\left(\partial_{3}\right)^{2} \text { is called the diAlembertim }
$$ and is often denoted \square.

