Kinematic thresholds
Last time, we worked in the high-energy limit $E \gg m_{c}, m_{n}$. Let's now put the muon mass (106 mev) back in and stud, the cross section for E just above $2 \mathrm{~m} \mu$.
Aside: this process is actively being investigated to produce muons for a muon collider. Muons are the lightest unstable subatomic particle, so if your beam eresig is just right, you can rake slow muons and notring else to contaminate the final state Since $m_{m} \gg m_{c}$, we can still approximate the e^{t} and e^{-}as massless, but now $\rho_{3}=\left(E_{3}, \rho_{3} \sin \theta, 0, \rho_{3} \cos \theta\right)$ with $\rho_{3}=\sqrt{E_{3}^{2}-m_{n}^{2}}$. We can solve for E_{3} by using 4-vector algebra:

$$
\begin{aligned}
& \rho_{1}+p_{2}=\rho_{3}+p_{4} \\
\Rightarrow & \left(p_{1}+\rho_{2}-\rho_{3}\right)^{2}=p_{4}^{2} \\
& m_{m}^{2}+E^{2}-2 E E_{3}=m_{\mu}^{2}
\end{aligned}
$$

$\Rightarrow E_{3}=E / 2$ (makes sense, event shared equally between μ^{+}and M^{-})
So $p_{3}=\sqrt{\frac{E^{2}}{4}-m_{n}^{2}}$, which is $\left|p_{f}\right|$ in our two-bols phase space
formula. Computing all the dot products as before gives (check (ais,)

$$
\left.\left.\langle | \mu\right|^{2}\right\rangle=e^{4}\left[\left(1+\frac{4 m_{\mu}^{2}}{E^{2}}\right)+\left(1-\frac{4 m_{\mu}^{2}}{E^{2}}\right) \cos ^{2} \theta\right]
$$

which reduces to our previous result for $E \gg 2 \mathrm{~m}$.

$$
\left.\frac{d \sigma}{d \Omega}=\frac{1}{2 E^{2}} \frac{1}{16 \pi^{2}} \frac{\sqrt{\frac{E^{2}}{4}-m^{2}}}{E}\langle | p_{f} \right\rvert\,
$$

Doing the angular integrals, $\sigma_{\text {tot }}=\frac{4 \pi \alpha^{2}}{3 E^{2}} \sqrt{1-\frac{4 m_{n^{2}}^{2}}{E^{2}}}\left(1+\frac{2 m_{n}^{2}}{E^{2}}\right)$ The square root is generic at kinematic thresholds: for $E=2 m_{m}+\Delta$, the phase space suppresses the cross section like $\sqrt{\frac{\Delta}{m_{m}}}$.

In the cm france, the threshold evert is $2 \mathrm{~m}_{\mu} \approx 212 \mathrm{meV}$
Consider a position beam hitting a target of stationary electrons. In this frame $\rho_{1}=\left(m_{e}, 0,0,0\right)$ and $p_{2} \approx\left(E_{\text {las }}, 0,0, E_{l_{a r a}}\right)\left(+\theta\left(m_{0}\right)\right)$ we know that in the $C M$ frame, $\left(p_{1}+p_{2}\right)^{2}=E_{C_{m}}{ }^{2}$, so compute in (ab free: $\left(\rho_{1}+\rho_{2}\right)^{2}=\left(m_{c}+E_{l a c}\right)^{2}-E_{\text {lac }}{ }^{2}=2 E_{\text {lac }} m_{c}+r_{e}^{2}$. Setting, this equal to $2 m_{c}:$

$$
2 E_{l a b} m_{c}+r_{c}^{2} \geq 4 m_{m}^{2} \Rightarrow E_{l a c} \geq \frac{4 m_{m}^{2}-m_{c}^{2}}{2 m_{c}}=44 \mathrm{GeV}!
$$

Colliding beams much more efficient than fixed targets!

Angular dependence
Let's now understand the $1+\cos ^{2} \theta$ dependence another way: instead of summing over spins, we will use explicit choices of spinous.
First let', work in the high-enersy limit: recall

$$
\begin{aligned}
& \left.v(p)=\binom{\sqrt{p \cdot \sigma} y_{s}}{-\sqrt{p \cdot \sigma} y_{s}} \rightarrow \sqrt{2 E}\left(\begin{array}{cc}
0 & 0 \\
0 & 1
\end{array}\right) y_{s}\right)
\end{aligned}
$$

$\bar{V} \gamma^{m} u=v^{+} \gamma^{0} \gamma^{m} u$, and $\gamma^{0} \gamma^{\mu}=\binom{\bar{\sigma}^{\mu}}{\sigma^{n}}$ is block-dimonal.
So if $\xi_{s}=\binom{1}{0}$ but $\eta_{s}=\binom{0}{1}$, u is a right-harded spinor and v is a left-handed spinor, and thus $\bar{v} r^{\text {an }}$ u vanishes.
\Rightarrow in the high-energy (massless) limit, $Q E D$ exhibits helicity conservation: left couples to left and right couples to right, but there are no mixed helicity terms. * really, we should say "chirality conservation." But the terminology is standard.

In fact, we already knew this because the original Lagrangion as $e_{R}^{+} \sigma^{m} e_{R} A_{\mu}+L^{+} \bar{\sigma}^{m} L A_{\mu}$ i left and right couple separately to photon.
Let's consider

right-haded left-habed particle $=$ antiparticle =
right-hanled spinor
right-haded spinor

Note: e^{t} has momentum in $-\hat{2}$ direction, so spin-up along $+\hat{2}$ is opposite direction of motion, hence left-handed helicits.

$$
\begin{aligned}
\bar{V}\left(p_{2}\right) \gamma^{\mu} u\left(\rho_{1}\right) & \longrightarrow e_{R}^{+}\left(\rho_{2}\right) \sigma^{\mu} e_{R}\left(p_{1}\right)=\sqrt{2(E / 2)}(0,-1) \sigma^{m} \sqrt{2(E / 2)}\binom{1}{0} \\
& =2 E\left((0,-1)\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\binom{1}{0},(0,-1)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{1}{0},(0,-1)\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)\binom{1}{0},\left(\begin{array}{l}
0,-1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\binom{1}{0}\right) \\
& =2 E(0,-1,-i, 0)
\end{aligned}
$$

con interpret his 4-vector as a circularly polarized virtual photon.
Now for muon port of diagram. Consider same spin stats:

$\mu_{R}^{+} \sigma^{\mu} \mu_{R}$ is a Lorentz 4-vector. Under a rotation by θ, it must transform in to $2 E(0,-\cos \theta,-i, \sin \theta)$. Because it represents out going particles, we need to take complex conjugate (i.e. flip roles of u and v): $\bar{u}\left(\rho_{3}\right) \gamma^{v}$

$$
M_{e_{R}^{-} e_{L}^{-1} \rightarrow \mu_{R}^{-} \mu_{L}^{+}} \sim(0,-\cos \theta,+i, \sin \theta) \cdot(0,-1,-i, 0)=-(1+\cos \theta)
$$

Note that this vanishes at $\theta=\pi$.

$S_{2}=+\hbar$

forbidden by angular momentum conservation!

Our $1+\cos ^{2} \theta$ in the spin-averaged matrix element came from adding up 4 Lelicits amplitudes for the different nonvanisling spin configurations:

$$
\begin{aligned}
& \mu_{e_{R}^{-} e_{L}^{+} \rightarrow \mu_{R}^{-} \mu_{L}^{+}}=-e^{2}(1+\cos \theta)=\mu_{L R \rightarrow L R} \\
& \mu_{R L} \rightarrow L R \\
& =\mu_{L R \rightarrow R L}=-e^{2}(1-\cos \theta) \\
& \left.\left.\Rightarrow\langle | \mu\right|^{2}\right\rangle=\frac{1}{4}\left[\left|\mu_{R_{L A R L}}\right|^{2}+\left|\mu_{L R \rightarrow L R}\right|^{2}+\left|\mu_{R L \rightarrow L R}\right|^{2}+\left|\mu_{L R \rightarrow R_{L}}\right|^{2} \mid\right.
\end{aligned}
$$

there are distinguishable final states, so be square amplitudes before summing

$$
=e^{4}\left(1+\cos ^{2} \theta\right)
$$

See Peskin sec. 8.3 for a nice interpretation of the helicity amplitudes in terms of currents and polarizations.

If the muon were exactly massless, the helicity-violating amplitudes $R L \rightarrow L L$, et., are exactly zero. But with a finite m_{m}, the physical left-handed muon spinor contains both left-chiral and right-chiral spinors', from the Lagrangian term $M_{\mu} \mu_{L}^{+} \mu_{R}$, we know that the opposite-chirality component is proportional to the fermion mass.

We can ${ }_{\mu_{L}}$ illustrate this as follows:

"mass insertion", sometimes caverient to think of this as part of the feynman diagram itself

$$
\Rightarrow \mu_{R L \rightarrow L L} \sim\left(\frac{m_{\mu}}{E}\right) \mu_{R L \rightarrow R L}
$$

Explains factors of $\frac{m_{\mu}{ }^{2}}{E^{2}}$ in $\left.\left.\langle | M\right|^{2}\right\rangle$

Keeping track of helicities and mass insertions is usually more convenient in 2-component notation, but there is a nice trick in 4 -component notation which automates the calculation.
Define $\gamma^{5}=\left(\begin{array}{rr}-11 & 0 \\ 0 & \mathbb{1}\end{array}\right) \quad\left(\begin{array}{ccc}5 " & \text { is a relic from old relativity texts } \\ \text { which used }\end{array}\right.$ which used Loratz indices $\mu=1,33,4$)
The chirality projection operators are

$$
P_{L}=\frac{1-\gamma^{5}}{2}=\left(\begin{array}{ll}
11 & 0 \\
0 & 0
\end{array}\right), P_{R}=\frac{1+\gamma^{5}}{2}=\left(\begin{array}{ll}
0 & 0 \\
0 & \mathbb{1}
\end{array}\right) \text {, which isolate Re }
$$

top 2 and bottom 2 components of a spinor.
To make a spinor right-haded, take $u \rightarrow \rho_{R} u$.
So we can write the $e_{R}^{-} e_{L}^{+}$amplitude as

$$
\bar{v} \gamma^{\mu} u \rightarrow\left(V^{+} P_{R}\right) \gamma^{0} \gamma^{\mu}\left(P_{R} u\right)
$$

Useful fact, γ^{s} anticommutes with all γ^{μ}, so moving P_{R} past both r^{0} and r^{m} preserves all signs. Furthermore, $P_{R}^{2}=P_{R}$ (a) appropriate for a projection operator) so

$$
v^{+} \rho_{R} \gamma^{0} \gamma^{\mu} \rho_{R} u=v^{+} \gamma^{0} \gamma^{\mu} \rho_{R}^{2} u=v^{+} \gamma^{0} \gamma^{\mu} \rho_{R} u=\bar{v} \gamma^{\mu} \rho_{R} u \text {. }
$$

\Rightarrow can compute the sum over spins with

$$
\sum_{s_{1, s}, s_{2}}\left|\bar{v}_{s_{2}} \gamma^{m}\left(\frac{1+r^{s}}{2}\right) u_{s_{1}}\right|^{2}=\operatorname{Tr}\left(\ldots \gamma^{s} \ldots\right) \text {, using some }
$$

additional trace identities involving $r^{\text {s }}$.
We will see there projectors much more when we study the weak interaction, which is in trinsically chiral.

