
Kinematic thresholds ⑥
-

Last time
,
we worked in the high- energy limit E →me

,
me.

Let 's now put the muon mass ( 106 Mer) back in and stud
, the

cross section for E just above 2mm .

Aside : this process is actively being investigated to produce muons

for a muoncotider . Muons are the lightest unstable subatomic

particle
,
so if your bean energy is just right

, you can make

slow muons and nothing else to contaminate the final state

since mm→me , we can still approximate the et and e- as massless
,

but now Pz = (Ez , p , sine, O, p, cos o) with p}
-

- Fini
.

We can solve

fo- E
, by using f-vector algebra :

pit Pa -- pztpr

⇒ (pith -pie-- pot

Mint E
'

- ZEE} = Mi

= > Ez
= Elz (makes sense

, energy shared equally between mt and ni )
so p, = ,

which is lpfl in our two - body phase space
formula

. Computing all the dot products as before greg (check this! )
LIMIT -- e

-Cat 4÷I) .- Ci- FEI) cost]
which reduces to our previous result fo- E → 2mm .

← IPA

II -- 2¥ ¥ ants

Doing the angular integrals
, Ota.

-

- ftp.IFENG + 2F÷)
The square root is generic at kinematic thresholds : for E -- 2mmTD

,

the phase space suppresses the cross section like Fan.



>
In the cm frame

,

the threshold energy is 2mm E 212 MeV (
consider a positron beam hitting a target of stationary
electrons

. In this Frans P, = (me, 0, 0,0 ) and Pri (Eia , , 0,0, Eca. ) (totnes)
we know that in the CM Frane

, (p, tpz )! Eci
,
so compute in lab Frane !

( PitPrf = (met Eca
.
T - Ewf = 2 Eia

.
me + me? Setting this equal to 2mi.

Zeca , met men 74mi =3 Eca, >
4mi-ni l

- - z
= 44 GeV

.

Colliding beans much more efficient than fixed targets !
-

-

Angular dependence
-

Let 's now understand the Itcos't dependence another way: instead of sunning
over spins, we will use explicit choices of spinors.

First let 's work in the high- energy limit : recall

"" it '

n'¥. " " 'ils Etp

E -p s ( '

ooo )
s

un -- t÷;
.
) - ref : " ';)"ooo ,

J Vu = vtroynu
,

and rot = ( E
"

on) is block -diagonal.

So if I
,
= ( '

o ) but Ys -- (9)
,

u is a right -handed spinor and v is a
left-handed spinor , and thus Tru Vanishes

-

.

⇒ in the high - energy (massless) limit, QED exhibits
as

helicity conservation : left couples to left and right couples
-

to right
,
but there are no mixed helicity terms.

*
really, we should say

"chirality conservation .
" But the terminology is standard.



In fact, we already knew this because the original Lagrangian was £8
eat on er An t LIL An : left and right couple sedates to photon .

spin

Let's consider → ←

e
-

e -- I;) 9=1,0)
et

right-handed
left - handed

particle = areti particle =

right -handed right- handed

spinor Spino-

Noli
.
et has momentum in - I direction

,

so spin - up along to is opposite direction
of matron

,
hence left-handed helicity.

Tippy- up, )→ ertcpdoneplp ,
) -- TUEN lo, - 1) on FED (f )

= 2E ( lo. - till :X 'd
,

lo
.
- ill: 'ok 'd

,

lo
,
- ill : l'd

,

co
,

- " lion :D
= 2E ( O

,

- I
,

- i
,
O )

can interpret this 4-vector as a C
.

Now for muon part of diagram .
Consider some spin States

'

.

a

La
-

-

.

-
-

-

E
µt

Matoran is a Lorentz 4-vector . Under a rotation by E, it must transform

into 2E ( O
,

- cost
,
- i
,
sine ) .

Because it represents outgoing particles, we

need to take complex conjugate ( i - e . Flip roles of u and v) : Icp, )VV

Me -net → inn
~ ( o , -Loso, ti , sine ) . (o, - I, - i , o )

= - ( It cost)

Note that this vanishes at o -- Tin
.

- ← →
forbidden by

e
-

→ →
et ← ←

m
- Mt Angular momentum

+ the thlz -the -ten
co- serration !

{ = t t
{ = - t



9
Our It cos't in the spin - averaged matrix element ✓
Came from adding up 4 helicity amplitudes for the
-

different non vanishing spin configurations
'

.

Me-ret- siren = - e- ( It cost) = M<r→<r

MRL →LR = MLR→RL=
- e

-

( l - cos o )

⇒ CINI 's = tf [ IMrural't lMansart't Impearl 't l Mar→ rat -I
-
these are distinguishable final States

,

so we square amplitudes before summing

= e&( It cos 't)

see Peskin Sec . 8.3 for a nice interpretation of the helicity

amplitude , in terms of currents and polarizations.

If the muon were exactly massless
,
the helicity - violating

amplitudes RL- LL, etc . , are exactly zero. But with a

finite mm
,

the physical left -handed muon Spino- contains

both left-chiral and right -chiral spinors; from the Lagrangian

term Mn Mt Mr , we know that the opposite - chirality
component is proportional to the fermion mass
#

-

we can illustrate this as follows :
ML

ng
-

P +E- "

mass insertion " : sometimes convenient to thinkn'¥ of this as part of the Feynman diagram itselfht

= ? Mm →<<
~ (F) MRL - RL '-

-

Explains factors of mi⇒ in SIMI 'S



keeping track of helicities and mass insertions is usually to
more convenient in 2-component notation , but there is a

nice trick in f-component notation which automates

the calculation .

Define Vs = (
-

Io 71 ) ( " S " is a relic from old relativity texts
which used Lorentz indices MIL, 33, t)

The chirality projection operators are

p< =
'II = ! 'T 8) , Pr =

'II -- (8¥ ) , which isolate the

top 2 and bottom 2 components of a spinor .

To make a spinor right -handed, take u → Pru .

So we can write the e-ret amplitude as

Jmu → (✓ Pryor
-

Pru)

Useful fact : V ' anticommutes with all Vm
,
so moving Pr past both

✓
°

and r- preserves all signs . Furthermore
,
PF '- Pr (as appropriate

for a projection operator) so

✓ Pryor- peu = v
'-

Vor
-

Ppi u -

- fro r-Pru -- TV"Pru .-V

⇒ can compute the sun over spins with

qq.lv?rnfttI)ugT--TrC - - - - rs - - 7
, using some

additional trace identities involving r?

We will see these projectors mue when we

study the weak interaction
,
which is intrinsically chiral .


