Discovery of the top quark
In 1995, the heaviest known elementary particle, the top quark with $m_{t}=173 \mathrm{GeV}$, was discovered in p \bar{p} collisions at the Tevatron at Fermilab. The top quark is so heavy that it decays before it hadronizes, so its production and decay can be modeled by free quark processes, simplifying things considerable.
As you will sec in detail in PHYS $5>0$, the proton can be modeled with parton distribution functions (PDFs), giving the probability of finding a certain flavor of quark or gluon inside the proton carrying a certain fraction of its energy. This is analogous to be photon splitting function you calculated in HW... except the PDF are non-perturbative so must be measured. So the cross section for $t \bar{\mp}$ production is $\sigma(p \bar{p} \rightarrow t \bar{t})=\sum_{\substack{i, j=1 \\ \text { quark, glom }}} \int_{0}^{1} d x d \bar{x} f_{i}(x) f_{;}(\bar{x}) \hat{\sigma}(i ; \rightarrow t \bar{t})$ where x and \bar{x} are the fraction of the proton (antiproton) monention taken by be parton.
proton is "most" up and down quarks, atipoton is "mosts" au added, so one important process is

But a nontrivial fraction of the proton is glues, so the gluon fusion process is also important:

In fact, there ore three diagrams which must be added coteratty: 8

This is best done by a computer. You will do this for HW, here we will look at the 99 annihilation diagram and define some convenient kinematic variables.

\hat{p}_{1} and \hat{p}_{2} are parton nometra. This is identical to $e^{+} e^{-} \rightarrow \mu^{+} r^{-}$up to the color factor, which gives the following in the squad matrix element.

$$
\begin{aligned}
& |M|^{2} \propto\left(\frac{1}{3}\right)^{2} \sum_{i j k 1} T_{j i}^{a}\left(T_{j i}^{c}\right)^{b} T_{k 1}^{b}\left(T_{k 1}^{l}\right)^{\wedge} \delta^{a l} \delta^{c d}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{9} \delta^{a c} \delta^{c d} \sum_{i j} T_{j i}^{a} T_{j}^{c} \sum_{k 1} T_{k 1}^{c} T_{1 k}^{d}
\end{aligned}
$$

geventos or Hermitian, so $T^{*}=T^{\top}$

$$
\begin{aligned}
& =\frac{1}{9} \delta^{a l} \delta^{c d} \operatorname{Tr}\left(T^{a} T^{c}\right) \operatorname{Tr}\left(T^{b+1}\right) \\
& =\frac{1}{9} \times \frac{1}{4} \delta^{a l} \delta^{c d} \delta^{a c} \delta^{b d} \quad\left(\frac{1}{4}=T_{F}^{2}\right) \\
& =\frac{1}{9} \times \frac{1}{4} \times \delta_{\text {tace oc } \mathcal{1}_{8 \times 8}} \delta^{b c} \\
& =\frac{1}{9} \times \frac{1}{4} \times 8=\frac{2}{9}
\end{aligned}
$$

$\Rightarrow \frac{d \hat{\sigma}}{d(c o) \theta}=\frac{2}{9} \times \frac{\pi \alpha_{s}^{2}}{2 \hat{s}}\left(1+\cos ^{2} \theta\right)$, where $\hat{s}=\left(\hat{p}_{1}, \hat{\beta}_{2}\right)^{2}$ is the patrice center of mass

Defining the over partaric Mandelstam variables using

$$
\begin{aligned}
& p_{3}=\left(\frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{2} \sin \theta, 0, \frac{\sqrt{3}}{2} \cos \theta\right) \\
& p_{4}=\left(\frac{\sqrt{3}}{2},-\frac{\sqrt{3}}{2} \sin \theta, 0,-\frac{\sqrt{3}}{2} \cos \theta\right) \\
& \hat{t}=\left(p_{3}-\hat{p}_{1}\right)^{2}=-2 p_{3} \cdot \hat{p}_{1}=-\frac{\hat{s}}{2}(1-\cos \theta) \\
& \hat{u}=\left(p_{4}-\hat{p}_{1}\right)=-2 p_{4} \hat{p}_{1}=-\frac{\hat{s}}{2}(1+\cos \theta) \\
& \hat{t}^{2}+\hat{u}^{2}=\frac{\hat{s}^{2}}{2}\left(1+\cos ^{2} \theta\right) \\
& \Rightarrow \frac{d \hat{\sigma}}{d \cos \theta}=\frac{2}{9} \frac{\pi \alpha_{6}^{2}}{\hat{s}}\left(\frac{\hat{t}^{2}+\hat{u}^{2}}{3^{2}}\right)
\end{aligned}
$$

3 note: we are assuming $\sqrt{\hat{s}} \gg m_{t}$
So we can upproxincte top quark as massless; not always, a good approximation at cog, the Tevation
\hat{s} is related to x, \bar{x} by $\hat{s}=\left(\hat{P}_{1}+\hat{P}_{2}\right)^{2}=\left(x P_{1}+\bar{x} P_{2}\right)^{2}=2 x \bar{x} P_{1} \cdot P_{2}=x \bar{x} s$
\Rightarrow not all center-ot-mass every goes in to collision.! Beans must be well above threshold of $S_{\text {then }}=4 \mathrm{~m}_{t}^{2}$ to have any hope of efficiently producing $t \bar{f}$. Indeed, at Teratron, $\sqrt{s}=1.8$ TeN, so $s \approx 27 s_{\text {trash }}$

As we anticipated, t decays almost instantaneously. We will see in the coming week, that the decay is through the weak interaction, $t \rightarrow W q$, where $q=6, s, d$. This means that, though the decay is fast, the width is small compared to be mars since it's proportional to a small coupling. This lets us use the narrow-widen approximation and separate production and decay.

The W also decays, 70% of the time to two quark, and 30% of the tire to a lepton plus a neutrino. In HW, you will investigate the fully hadronic decay; here we will look at the channel that the CDF defector used to claim discovery:

$\Rightarrow 4$ or more gets plus one lepton plus missing eareray from neutrino

More on missing enerayi. Momentum conservation implies
$\sum p_{f}=P_{1}+P_{L_{2}}$, but we lose all sorts of particles "down the beampipe" Collinear with P_{1} and P_{2}, so it's hard to enforce longitudinal momentum conservation. Transverse is easier: $\sum \vec{P}_{T}=0$, so if we measure the total momentum transverse to the beam direction and doit find zero, we know there must be some missing transverse energy ff from an undetected particle

This can be mundane (ie- neutrino) or exotic (dark matte!!) and is often a helpful signature.
Similarly, to reduce $Q C D$ backgrounds, usually require a minimum P_{T} for the jets (this ensues thes're not just soft or collinear radiation). This also means we con use events win 4 or more jets and only consider the 4 jets with the largest P_{T}.

As we discussed last week, in general we cant tell a 9 vi s \bar{q} jet aport, nor can we identify the flavor of the quark from which the jet arose with one exception.
Jets arising from 6 quarks can be "tagged" with some efficiency <1 because the lifetime of the 6 quark (or more precisely, hadrons containing 6 quarks) is "long" on collider scales, $\tau \approx 10^{-12} \mathrm{~s}$, so in the fran of the collider, the mean distance traveled before decaying is $l=\gamma<\tau$. we can estimate the boost of the 6 quark from $t \rightarrow W 6$ by assuming the top is produced at rest, and $E_{6} \approx \frac{m_{t}}{2} \approx 33 m_{b}$, so $\gamma \approx 33$.
$\Rightarrow l=\gamma_{c} \tau \approx 1 \mathrm{~cm}$! This is a measurable distance and gives rise to a displaced vertex.

Let's say we have an event with 1 muon, 4 jets lot which 2 are tagged as 6 jets), and missing every. This is a candidate t \bar{t} event. The hypothesized kinematics are
$P \bar{P} \rightarrow t \bar{Y}+X \quad(X$ is all the undetected stuff down the beampipe)

$$
\begin{aligned}
& t \rightarrow b_{1} w_{1} \\
& \bar{t} \rightarrow \bar{b}_{2} w_{2} \\
& w_{1} \rightarrow \mu+v_{m} \\
& w_{2} \rightarrow j_{1}+j_{2}
\end{aligned}
$$

We can measure the full 4 -vectors of b_{1}, b_{2}, μ, j_{1}, and j_{2}. We wat to solve for the unknowns $\vec{p}_{w_{1}}, \vec{p}_{w_{2}}, \vec{p}_{t_{1}}, \vec{p}_{t_{2}}, \vec{p}_{v_{\mu}}, n_{x}, n_{t}, p_{x_{2}}$ (18 variables). We have 20 equations (5 4-vector constraints) so this is an oveconstrained system and we can check that our solution for m_{t} is consistent.
Here's how this works: define $\vec{P}_{T_{v}}$ as $-\left(\vec{P}_{T_{b_{1}}}+\vec{P}_{T_{6_{2}}}+\vec{P}_{T_{m}}+\vec{P}_{T_{j}}+\vec{P}_{T_{T_{2}}}\right)$,
So p_{2} is still unknown. From $w_{1} \rightarrow \mu+v_{\mu}$, we have

$$
m_{w}^{2}=m_{\mu}^{2}+2 E_{v} E_{\mu}-2 p_{z_{\mu}} p_{z}-2 \vec{p}_{T_{\mu}} \cdot \vec{p}_{T_{v}} \text {. Set } E_{v}=\sqrt{p_{p_{v}}^{2}+\vec{p}_{T_{v}}^{2}} \text {, this is now }
$$

a quadratic equation for $p_{z_{v}}$.
Similarly, let 4 -vector of initial $P \bar{P}$ be $P \equiv(\sqrt{5}, 0,0,0)$. Then
$p-p_{x}=p_{t}+\rho_{t}$, so $s+m_{x}^{2}-2 \sqrt{s} E_{x}=2 m_{t}^{2}+2 \hat{p}_{t_{1}} \cdot \hat{p}_{t_{2}}$. write
$E_{x}=\sqrt{P_{z_{x}}^{2}+m_{x}^{2}}$ (X is assumed to carry no transvese momentum), solve for
$p_{z_{x}}$ by $P_{z_{t_{1}}}+p_{z_{2}}+p_{z_{x}}=0$, this Gecorcs a quadratic equation for m_{x}
\Rightarrow algorithm for kinematic fitting, which gives a best - fit value of n_{t}.

