In QM, symmetries are implemented by witary operators.
We will justify the following transformation rules for quatum fields y.
Spacetime $(a, \Lambda), \varphi(x) \rightarrow \varphi^{\prime}(x)=U^{+}(a, \Lambda) \varphi(x) U(a, \Lambda)=R(\Lambda) \cdot \varphi\left(\Lambda^{-1}(x-a)\right)$
abstract implementation
of Poincare trastionation
by witars operators
acting on Hilbert space
explicit implematation
by a represcitation
matrix R and a
shift of coordinates
in the argurat of φ
Internal: $: \varphi(x) \xrightarrow{g} \varphi^{\prime}(x)=U^{+}(g) y(x) U(g)=R(g) \cdot \varphi(x)$
arguret of φ is unchanged for internal symmetries.
will see that internal symmetries are related to (generalized) Charge.
Recall a unitary operator U satisfies $U^{+} U=\mathbb{1}$, so $U^{+}=U^{-1}$. We will use daggers and inverses interchangeably when dealing with witary operators.
Coleman-Mandula theorem", a consistent relativistic quantum theory can only have the symmetries of Poincare times an internal symmetry group G, so once we have specified G and chosen the representations $R(g)$, we will have fully specified our quantion field theory of elementary particles.

Why unitary? We wat a symmetry operation to preserve inner products. If a state $|\alpha\rangle$ temsforss as $U|\alpha\rangle$, then for ans operator θ, $\langle\alpha| \theta|\alpha\rangle \rightarrow\langle\alpha| u^{+} \theta u|\alpha\rangle$. For these to be the sure, in the Heisenberg picture where states are fixed and operators transform, we must have $\theta \rightarrow u^{+} \theta u$. Taking $\theta=\mathbb{1}$ implies $U^{+} u=\mathbb{1}$.
We have already, discussed how $\varphi(x)$ is a collection of quantum operator labeled by x^{μ}, so this justifies the abstract fronstormation rule $\rho \rightarrow U^{+} q u$. An equivalent way of realizing this symmetry is to let φ itself transform in a representation R.
loophole; supersymmetr!! But this is the ans ore we know of, and it doesn't describe the standard model.

In this course las opposed to QFT) we are mare interested in the symmetry transformations on fields, but these are equivalat descriptions (ie. there is a mell-defthed prescription for costructiry $u(g)$)

Algorithm for constructing $Q F T$ of elementary particle interactions:

- Write down an action $S[p]=\int d^{4} \times \mathcal{L}\left[\varphi, \alpha_{2} \varphi, \ldots\right]$ which is a scalar functional of the fields
- by construction, ensure S is invariant under Poincoré and an other desired internal symmetries
- Find equations of motion by variational principle $\delta S=0$ - these equations will respect the same symmetries as 5 itself
- The quadratic piece of \mathcal{L} describer free (non-interacting) fields. Fowier-transtorm these fields to find operators which create free particles with definite momentum k^{n}
- these plare-umue solutions will satisfy a disposion relation $k^{\mu} k_{n}=n^{2}$ appropriate for relativistic porticks
- the spin of the particle is determined by the Poricari classification, ie eiservilue of W^{2} (though we were not rigorous about it, we were looking at unitary representations on states):
(this notation is standard)

$$
\begin{align*}
\text { Spin- 0: } & (0,0) & \phi(x) & \rightarrow \phi\left(\Lambda^{-1}(x-a)\right) \\
\text { Spin- } \frac{1}{2}: & \left(\frac{1}{2}, 0\right) \text { ardor }\left(0, \frac{1}{2}\right) & \psi_{\alpha}(x) & \rightarrow L_{\alpha}^{3} \psi_{b}\left(\Lambda^{-1}(x-a)\right) \\
\text { Spin-1: } & \left(\frac{1}{2}, \frac{1}{2}\right) & A_{\mu}(x) & \rightarrow \Lambda_{\mu}^{v} A_{V}\left(\Lambda^{-1}(x-a)\right) \tag{1}
\end{align*}
$$

these three are sufficient to describe all particles in the $5 m$

- The cubic and higher pieces of α describe interactions. If in e coefficiats ("coupling constants") are small, can write down a perturbative expansion \Rightarrow Feynman diagrams

Spin -0
Let's make these considerations concrete by considering a specific Lagrangian for a collection of complex scalar fields,
$\Phi=\binom{\varphi}{\varphi} \equiv \frac{1}{\sqrt{2}}\binom{\phi_{1}+i \varphi_{2}}{\varphi_{1}+i \varphi_{2}} \quad$ where $\phi_{1}, \theta_{2}, \varphi_{1}, \varphi_{2}$ are real

$$
\mathcal{L}[\Phi]=\partial_{\mu} \Phi^{+} \partial^{n} \Phi-m^{2} \Phi^{+} \Phi-\lambda\left(\Phi^{+} \Phi\right)^{2}
$$

[this Lagrangian will eventually describe the Higgs boson]
Claim. This Lagrangian describes 4 massive, relativistic scalar freeds which have equations of motion invariant under the following, symmetries:

- $\Phi(x) \rightarrow \Phi\left(\Lambda^{-1}(x-a)\right) \quad$ (Poincorí)
- $\Phi(x) \rightarrow e^{i Q x} \Phi(x)$ for some real number $Q \quad(u(1))$
- $\Phi(x) \rightarrow e^{i \alpha^{\alpha} \sigma^{2} / 2} \Phi(x) \quad(\operatorname{Su}(2))$

First let's expand out \mathscr{L} just to see there is nothing mysterious in the notation:

$$
\begin{aligned}
& \Phi^{+} \equiv\left(\Phi^{*}\right)^{\top}=\frac{1}{\sqrt{2}}\left(\varphi_{1}-i \varphi_{2} . \quad \varphi_{1}-i \varphi_{2}\right) \\
& \alpha=\frac{1}{2}\left(\begin{array}{ll}
\partial_{m} \phi_{1}-i \partial_{m} \phi_{2} & \partial_{m} \varphi_{1}-i \partial_{n} \varphi_{2}
\end{array}\right)\binom{\partial^{\mu} \varphi_{1}+i \partial^{n} \phi_{2}}{\partial^{\wedge} \varphi_{1}+i \partial^{\mu} \varphi_{2}}-\frac{n^{2}}{2}\left(\begin{array}{ll}
\varphi_{1}-i \varphi_{2} & \varphi_{1}-i \varphi_{2}
\end{array}\right)\binom{\phi_{1}+i \varphi_{2}}{\varphi_{1}+i \varphi_{2}}+\cdots \\
& \left.\begin{array}{rl}
= & \frac{1}{2}\left(\partial_{m} \psi_{1}\right)\left(\partial^{2} \phi_{1}\right)+\frac{1}{2}\left(\partial_{1} \phi_{2}\right)\left(\partial^{2} \phi^{2}\right)+[\phi \rightarrow \varphi] \\
& -\frac{m^{2}}{2} \phi_{1}^{2}-\frac{m^{2}}{2} \phi_{2}^{2}+[\phi \rightarrow \varphi]
\end{array}\right] \\
& \text { these terms ore } \\
& \text { quadratic in the fields, } \\
& \text { so will five free-patick } \\
& \text { equations of motion }
\end{aligned}
$$

+ (terms proportional to λ)
For now, let's set $\lambda=0$ and only look at the quadratic terns.

To find equation of notion, use Euler-Lagranse equation:
$\partial_{\mu} \frac{\partial \alpha}{\partial\left(\partial_{\mu} \psi_{1}\right)}-\frac{\partial \alpha}{\partial \psi_{1}}=0 \quad$ (and similar for $\left.\phi_{L}, \varphi_{1}, \varphi_{2}\right)$
(4-dimensional generalization of $\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}}\right)-\frac{\partial L}{\partial x}=0$ from classical mechanics)
For quadratic terms only,

$$
\begin{aligned}
& \frac{\partial \alpha}{\partial\left(\partial \psi_{1}\right)}=\frac{\partial}{\partial\left(\partial_{m} \phi_{1}\right)}\left[\frac{1}{2} \eta^{\alpha \beta} \partial_{\alpha} \phi_{1} \partial_{\rho} \psi_{1}\right]=\frac{1}{2} \eta^{\alpha \theta}\left(\delta_{\alpha}^{\mu} \partial_{\beta} \phi_{1}+\delta_{\beta}^{\mu} \partial_{\alpha} \phi_{1}\right) \\
&=\partial^{\mu} \phi_{1} \\
& \frac{\partial \alpha}{\partial \phi_{1}}=-n^{2} \phi_{1} \\
& \Rightarrow \partial_{\mu}\left(\partial^{\mu} \phi_{1}\right)-\left(-m^{2} \phi_{1}\right)=0 \\
&\left(\partial_{\mu} \partial^{\mu}+n^{2}\right) \phi_{1}=0 \text { Klein-Gordon equation }
\end{aligned}
$$

Get idatical equations for $\phi_{2}, \varphi_{1}, \varphi_{2}$. not a surprise, since they appear symorticall, in \mathcal{L} (more on this shortly)
Can succinctly write all 4 equations by treating $\Phi,{\Phi \Phi^{+}}^{+}$as independat fields:

$$
\frac{\partial \alpha}{\partial(\partial \mu \Phi)}=\partial^{\mu} \Phi^{+}, \quad \frac{\partial L}{\partial \Phi}=-m^{2} \underline{E}^{+}
$$

$\Rightarrow\left(\partial_{n} \partial^{\mu}+m^{2}\right) \Phi^{+}=0$, same for Φ from Euke-Lagrange eq, fir Φ^{+} Try a solution $\Phi(x)=e^{-i k_{\wedge} x^{\wedge}}\left(\begin{array}{l}a \\ b \\ b\end{array}\right)$.

$$
\left(\left(-i k_{m}\right)\left(-i k^{\mu}\right)+m^{2}\right)\binom{a}{b}=\binom{0}{0}
$$

This solved the equation tor any a, 6 as long as $k_{m} k^{n}=m^{2}$, the correct energy-momatom relation for a relativistic massive particle. Thinking back to ow Poincare discussion, Φ is in an infinite-dimensional cop. of the poincare group, with $P_{\mu}=i \partial_{\mu}$ and eigavalue $p^{2}=m^{2}$. The states $|k\rangle$ created by this $\Phi(x)$ have momentum k^{m}.

Now let's consider the symmetries of α.

- Poincare: If we transform coordinates $x^{\mu} \rightarrow \Lambda_{v}^{\mu} x^{v}+a^{\mu}$, I should take the same value in 60 th coordinate systems.
So we should shift re orouratent of Φ;

$$
\Phi \longrightarrow \Phi\left(\Lambda^{-1}(x-a)\right)
$$

(II itself doesn't get a Lorentz transformation matrix because it has spin 0) This is just the generalization of the familiar fact that to translate a function by \vec{a}, you shift $f \rightarrow f(\vec{x}-\vec{a})$. This is consistent with our convention to use exclusively active transformations.
performing this transformation on \mathcal{L} gives:

$$
\begin{aligned}
\mathcal{L}\left[\Phi(x), \partial_{\mu} \Phi(x)\right] \rightarrow & \eta^{\mu v} \partial_{\mu} \Phi^{+}\left(\Lambda^{-1}(x-a)\right) \partial_{v} \Phi\left(\Lambda^{-1}(x-a)\right)<\begin{array}{c}
\text { dhifeded asumeat } \\
\text { shits }
\end{array} \\
& -m^{2} \Phi^{+}\left(\Lambda^{-1}(x-a)\right) \Phi\left(\Lambda^{-1}(x-a)\right) \\
& -\frac{\lambda}{4}\left(\Phi^{+}\left(\Lambda^{-1}(x-a)\right) \Phi\left(\Lambda^{-1}(x-a)\right)\right)^{2}\left\{\begin{array}{l}
\text { nothing, happens other } \\
\text { than shifted armet }
\end{array}\right.
\end{aligned}
$$

Look at derivative term;

$$
\begin{aligned}
& \partial_{\mu} \Phi^{+}\left(\Lambda^{-1}(x-a)\right)=\left(\Lambda^{-1}\right)_{\mu}^{\rho} \partial_{\rho} \Phi^{+}\left(\Lambda^{-1}(x-a)\right) \quad \text { (chain ru(c) } \\
& \Rightarrow \eta^{\sim v} \partial_{\mu} \Phi^{+}(\Lambda^{-1}(x-a) \partial_{\nu} \Phi\left(\Lambda^{-1}(x-a)\right)=\underbrace{\eta^{\mu \nu}\left(\Lambda^{-1}\right)_{\mu}^{\mu}\left(\Lambda^{-1}\right)_{v}^{\sigma} \partial_{\rho} \Phi^{+}\left(\Lambda^{-1}(x-a)\right) \partial_{\sigma} \Phi\left(\Lambda^{-1}(x-a)\right) .} \\
& =\eta^{\rho \sigma} \text { by def. of } \\
& \text { Lorentz soup } \\
& =\eta^{\rho \sigma} \partial \underline{\Phi}^{+}\left(\Lambda^{-1}(x-a)\right) \partial_{\sigma} \Phi\left(\pi^{\prime}(x-a)\right) \\
& \Rightarrow \mathcal{L}\left[\Phi(x), \partial_{m} \Phi(x)\right] \rightarrow \mathcal{L}\left[\Phi\left(\Lambda^{-1}(x-a)\right), \partial_{\mu} \Phi\left(\Lambda^{-1}(x-a)\right)\right]
\end{aligned}
$$

Lagasion stays exactly the save apart from a shift in coordinates.
So, if we derive equations of native from $\delta\left(\int d^{4} \times L(\underline{I}(x))\right)=0$, they will take the same for after a lorentz transformation: the $\int d^{4} x$ integration renders the shift trivial.

