
Adding Angular Momenta

The problem of adding two (or more) quantum mechanical angular momenta comes up in
atomic physics, molecular physics, nuclear physics, and condensed matter physics. The
most common question is, given two sources of angular momentum, say orbital and spin,
what are the eigenstates of total angular momentum?

We will work out some results for this question, without specifying the particular
application. We will work in the bra-ket space of states with definite values of the
z−component of the angular momenta. We have found previously that the allowed
values of the total angular momentum quantum number are integer or half-integer. We
consider two angular momenta, j1 and j2. For |j1,m1 >, we have that

|j1,m1 > has 2j1 + 1 states,

which can be listed in detail as

|j1, j1 >, |j1, j1 − 1 >, . . . , |j1,−j1 >,

and likewise for our second angular momentum, j2. The states of the combined system
are product states, often denoted by

|j1,m1 > ⊗|j2,m2 > .

On this space, the total angular momentum operators are sums of parts which act on
the first or the second term in the product. For example, we may write the operator for
total angular momentum along the z− axis as

Jz = J1
z × I2 + I1 ⊗ J2

z ,

where I1, I2 are identity operators. Acting on our state with Jz, we have

Jz|j1, m1 > ⊗|j2,m2 >= J1
z |j1,m1 > ⊗|j2,m2 > +|j1,m1 > ⊗J2

z |j2, m2 >

= h̄(m1 + m2)|j1,m1 > ⊗|j2,m2 >,

so as expected, the value of Jz is just h̄(m1 + m2). A slightly different way to denote
these states is as follows:

|j1,m1 > ⊗|j2,m2 >⇐⇒ |j1,m1; j2,m2 > .

Either way, the kets in our space have a two-valued index m1,m2 and a general operator
O in our space would be an object with matrix elements Om1′m2′;m1,m2 . However, all of the
operators we need for angular momentum theory have a simple structure like Jz, where
the individual terms in the operator are the identity in one or the other pair of indices.



Example with j1 = 1, , j2 = 1
2

To give a specific example, consider a case where j1 = 1, and j2 = 1
2
. For the states

|j1,m1 >, we have

|1, 1 >=




1
0
0


 , |1, 0 >=




0
1
0


 , |1,−1 >=




0
0
1


 .

For |j2,m2 > we have

|1
2
,
1

2
>=

(
1
0

)
, |1

2
,−1

2
>=

(
0
1

)
,

Now for a specific product state, we have

|1, 1 > ⊗|1
2
,
1

2
>=




1
0
0


⊗

(
1
0

)

Acting on this with Jz, we have

Jz|1, 1 > ⊗|1
2
,
1

2
>= h̄




1 0 0
0 1 0
0 0 1







1
0
0


⊗

(
1
0

)
+




1
0
0


⊗ h̄

(
1
2

0
0 −1

2

) (
1
0

)

= h̄(1 +
1

2
)




1
0
0


⊗

(
1
0

)

For the raising and lowering operators, the structure of the operators is similar, except
that the values of m1 and m2 will be raised or lowered one unit.

Addding orbital angular momentum l and spin 1
2

We now turn to the problem of adding angular momenta. There are two aspects to the
problem; we need to find out what the allowed values of total angular momentum are,
given j1 and j2, and then for a given allowed total angular momentum j , we need to find
out how to actually construct |j, m > . To get started, let us consider a problem that
occurs often, namely adding a certain orbital angular momentum l to spin 1

2
. We start by

listing the states, beginning with the “positively stretched” state with Jz = h̄(l + 1/2),
which is the largest Jz attainable in this system. This state is unique.

Notation: Since j1 = l, and j2 = 1
2

remain fixed in our present consideration, we will
simply denote states as |m1,m2 > rather than the more cumbersome |j1,m1, j2,m2 >, so
the positively stretched state is |l, 1

2
> . Now we lower it using J−. This will act on m1 = l

and m2 = 1
2

resulting in two states. Continuing to lower these two states again generates



two states. The reason only two states can be generated is that S−| − 1
2

>= 0. We
continue to lower, and continue to find two states, until finally the “negatively stretched
state” |−l,−1

2
> is reached. This is again a unique state. The pattern of states generated

is shown in the following table.

m state(s) no.states

l + 1
2

|l, 1
2

> 1

l − 1
2

|l − 1, 1
2

>, |l,−1
2

> 2

...
...

...

−l − 1
2

| − l,−1
2

> 1

If we count the number of states in our system, it is (2l + 1) · (2) = 4l + 2. This num-
ber is reproduced if we assume the values of j are l + 1

2
, and l − 1

2
. This would give

(2(l + 1
2
) + 1) + (2(l − 1

2
) + 1) = 4l + 2, the same number. This counting is suggestive.

Let us see how we would actually prove that these are the two j values allowed. Take
first the positively stretched state, |l, 1

2
> . Acting on this state with the raising operator

gives zero, since L+|l >= 0 and S+|12 >= 0. These two results imply that J+|l, 1
2

>= 0
as well.

Finding the state with j = l + 1
2 ,m = l + 1

2 .

To prove that this state has j = l + 1
2
, we make use of the formula

J−J+ = J · J − (JzJz + h̄Jz). (1)

First, note that Jz|l, 1
2

>= h̄(l + 1
2
)|l, 1

2
> . Now, using J+|l, 1

2
>= 0, we have

J · J |l, 1

2
>= (JzJz + h̄Jz)|l, 1

2
>= h̄2(l +

1

2
)(l +

3

2
)|l, 1

2
>,

which proves that j = l+1
2

for this state. So we have that |l, 1
2

> has j = l+1
2
, m = h̄(l+1

2
).

Finding the state with j = l + 1
2 ,m = l − 1

2 .

Next, we lower |l, 1
2

> . This will generate the state with j = l + 1
2
,m = l − 1

2
. Note

that using raising and lowering operators changes Jz, but never the value of
j. First we use

J−|j, m >= h̄
√

(j + m)(j −m + 1)|j, m− 1 > .

which in this case gives

J−|l +
1

2
, l +

1

2
>= h̄

√
2l + 1|l +

1

2
, l − 1

2
> .



There is an almost unavoidable mixing of notation here. To be clear the states denoted
as |l + 1

2
, l ± 1

2
> are in |j,m > form, that is

|l +
1

2
, l +

1

2
> means |j = l +

1

2
,m = l +

1

2
>,

|l +
1

2
, l − 1

2
> means |j = l +

1

2
,m = l − 1

2
> .

Next we make us of J− = L−⊗ Is + Il⊗S−, and apply it to |l, 1
2

> which as shown above
is the same as |j = l + 1

2
,m = l + 1

2
> . We make use of this expression for J− and

L−|l, m >= h̄
√

(l + m)(l −m + 1)|l, m−1 > S−|s,m >= h̄
√

(s + m)(s−m + 1)|s,m−1 >,

and we finally have another expression for J−|l, 1
2

> which gives

J−|j = l +
1

2
,m = l +

1

2
>= h̄

√
2l + 1|j = l +

1

2
,m = l − 1

2
>

= h̄
(√

2l|l − 1,
1

2
> +|l,−1

2

)
,

where in the last equality, the states are in |m1,m2 > form. Re-arranging the formula,
we have

|j = l +
1

2
,m = l − 1

2
>=




√
2l

2l + 1
|l − 1,

1

2
> +

√
1

2l + 1
|l,−1

2
>


 , (2)

where to re-iterate, the left hand side state is in |j, m > form and the right hand side
states are in |m1,m2 > form. Eq.(2) tells us the linear combination of the two states
with m = l − 1

2
has j = l + 1

2
> .

Finding the state with j = l − 1
2 ,m = l = 1

2 .

From the state of Eq.(2) we can form a state orthogonal to it, namely


−

√
1

2l + 1
|l − 1,

1

2
> +

√
2l

2l + 1
|l,−1

2
>


 (3)

We know the state of Eq.(3) has m = l− 1
2
, and is orthogonal to |j = l + 1

2
,m = l− 1

2
> .

It is easy to show that J+ acting on this state gives zero. It may be shown to have
j = l − 1

2
by applying Eq.(1) in exactly the same manner as we did for the state with

j = l+ 1
2
,m = l+ 1

2
. We now have both states with m = l− 1

2
. The remaining states with

lower values of m can be generated by further applications of the lowering operator, J−.



Adding orbital angular momentum l to angular momentum 1

To see the general pattern of adding two angular momenta, we briefly discuss adding
angular momentum l to angular momentum 1, where we assume l > 1. There is again
a positively stretched state with m = l + 1, denoted as |l, 1 > . Applying the lowering
operator to this state leads to two states, just as in the previous case. However, lowering
once again leads to three states. Further applications of the lowering operator continues
with three states, until m = −l is reached which has two states, and finally there is the
negatively stretched state with m = l − 1. The pattern is shown in the table below.

m state(s) no.states

l + 1 |l, 1 > 1

l |l − 1, 1 >, |l, 0 > 2

l − 1 |l − 2, 1 >, |l − 1, 0 >, |l,−1 > 3

...
...

...

−l | − l + 1,−1 >, | − l, 0 > 2

−l − 1 | − l,−1 > 1

The number of states in this system is (2j1 +1)(2j2 +1) = (2l+1)(2 ·1+1) = 6l+3. The
pattern of states suggests that there are three values of total angular momentum here,
namely j = l + 1, j = l, j = l − 1. This set of j values would have (2(l + 1) + 1) + (2l +
1) + (2(l − 1) + 1) = 6l + 3 states, which is the correct number. The actual states can
be constructed as in the previous, simpler case, by applying the lowering operator, and
constructing states orthogonal to those generated by the lowering operator. The whole
set of states can be generated this way.

Adding adding angular momenta in general

Having seen two examples, it is easy to state the general rule for adding angular momenta
j1 and j2. The set of allowed values of j depends on which of j1, j2 is smaller. This was
seen in the two examples above, where 1

2
and 1 were taken to be smaller than l. Regardless

of which of j1, j2 is smaller, the rule for the allowed values of j are that j can take the
values j1 + j2, j1 + j2 − 1, . . . , |j1 − j2|. This is sometimes written as

j1 ⊗ j2 = j1 + j2 ⊕ j1 + j2 − 1⊕ . . .⊕ |j1 − j2|

To actually construct a state |j, m > from the |j1,m1, j2,m2 > a set of coeffi-
cients are needed. These are call Clebsch-Gordon coefficients. They are denoted as
C(j1, j2, j; m1,m2,m), where the coefficient vanishes unless m1 + m2 = m, and j is one



of the allowed values that can result from adding j1 and j2. The way they are used is as
follows

|j, m >=
∑

m1,m2

m1+m2=m

C(j1, j2, j; m1,m2,m)|j1,m1; j2,m2 > . (4)

In the work of the previous section on adding orbital angular momentum l to spin 1
2
,

several of the Clebsch-Gordon coefficients have been determined. See Eqs.(2) and (3).
We have

C(l,
1

2
, l +

1

2
; l,

1

2
, l +

1

2
) = 1

C(l,
1

2
, l +

1

2
; l,−1

2
, l − 1

2
) =

√
1

2l + 1

C(l,
1

2
, l +

1

2
; l − 1,

1

2
, l − 1

2
) =

√
2l

2l + 1

C(l,
1

2
, l − 1

2
; l,−1

2
, l − 1

2
) =

√
2l

2l + 1

C(l,
1

2
, l − 1

2
; l − 1,

1

2
, l − 1

2
) = −

√
1

2l + 1

The Clebsch-Gordon coeffients represent what happens when the identity is sandwiched
in front of |j,m > . Eq.(4) is equivalent to

|j, m >=
∑

m1,m2

m1+m2=m

|j1,m1; j2,m2 >< j1, m1; j2,m2|j,m > (5)

From this viewpoint, we can see that

C(j1, j2, j; m1,m2,m) =< j1,m1; j2, m2|j,m >,

so the Clebsch-Gordon coefficient is a matrix element of a unitary transformation that
relates the system in the |j1,m1; j2,m2 > basis to the |j, m > basis.

NOTE The Clebsch-Gordon coefficients are completely determined objects. Exten-
sive tables can be found by Googling “Clebsch-Gordon coefficents,” or looking in books
on the quantum theory of angular momentum (e.g. Edmonds, Wigner, etc.)


