
Bound States in d=1

In this section we will discuss a number of properties of bound states, concentrating on
d = 1, but many properties hold for other dimensions, including d = 3.

Schrödinger Equation Let us start with the Hamiltonian

H =
PP

2m
+ V (X)

Our state is |Ψ(0) >= |Ψ > at t = 0. For |Ψ(t) >, we have

|Ψ(t) >= U(t, 0)|Ψ(0) >,

where

U(t, 0) = exp(−iHt
h̄

)

( Note that we are back in the Schrödinger picture, where all the time dependence is
carried by the states.) The derivative of U(t, 0) is

ih̄∂tU(t, 0) = HU(t, 0)

Using this to get the derivative of |Ψ(t) >, we have

ih̄∂tU(t, 0)|Ψ >= HU(t, 0)|Ψ >= H|Ψ(t) >,

so taking the matrix element with < x|, we have

ih̄∂t < x|Ψ(t) >=< x|H|Ψ(t) >= (− h̄2

2m
∂2
x + V (x)) < x|Ψ(t) > (1)

We can now leave Dirac notation for the present, and set < x|Ψ(t) >= Ψ(x, t). Eq.(1)
now reads

ih̄∂tΨ(x, t) = (− h̄2

2m
∂2
x + V (x))Ψ(x, t) (2)

We are looking for bound states or normalized energy eigenstates which satisfy

H|Ψ >= E|Ψ >, < Ψ|Ψ >= 1

For an energy eigenstate, we have

< x|Ψ(t) >=< x|U(t, 0)|Ψ >= exp(−iEt
h̄

) < x|Ψ >,

or in wave function language,

Ψ(x, t) = exp(−iEt
h̄

)Ψ(x)

and pulling off the factor exp(−iEt
h̄

) from every term, the Schrödinger equation becomes

(− h̄2

2m
∂2
x + V (x))Ψ(x) = EΨ(x)



Classical Motions Much insight into the solutions of the Schrödinger equation can
be obtained by first looking at the classical motion in a given potential V (x). We will
consider three general classes of potential;

I V (x)→ 0, as |x| → ∞.

II V (x)→ 0 as x→∞, V (x)→∞ as → −∞.

III V (x)→∞ as |x| → ∞.

Simple examples of these three types are shown in the next three plots.
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In these plots, the potential is shown in red, and a constant energy line is shown in green.
The regions marked (a),(b), and (c) are defined as follows

(a) E > V for at least one of x→∞. x→ −∞.

(b) E > V for a finite range of x values. E < V as |x| → ∞.

(c) E < V for all x.

Now consider the possible classical motions of the particle in (a),(b),(c). We write
the classical Hamiltonian

Hcl =
p2

2m
+ V (x) = E

and solve for the kinetic energy,
p2

2m
= E − V

Now, as far as classical motion is concerned, the particle can never be in region (c). That
would correspond to a negative kinetic energy. The particle is allowed in classical motion
to be in that part of region (b), where the kinetic energy is positive. In the plots, the
green line is always in region (b). Here the classical motion involves going back and forth
between two points, called turning points where the kinetic energy vanishes. Finally in
region (a), the particle again has positive kinetic energy, and will either approach the
potential from infinity or escape to infinity as time goes on. As we will see, region (b) is
the only one where quantum bound states can occur.



Behaviors of Schrödinger equation Let us write the Schrödinger equation for an
energy eigenstate. We have

(− h̄
2∂2

x

2m
+ V (x))Ψ(x) = EΨ(x).

Denoting ∂2
xΨ as Ψ′′, we re-arrange the equation to

Ψ′′ = −2m

h̄2 (E − V (x))Ψ(x)

We see that the sign of E−V (x) which is classically the kinetic energy, plays an important
role in determining the sign of Ψ′′. Let us classify the different cases that can occur. The
two broad classes are E > V and E < V.

E > V : If E > V and Ψ > 0, we have Ψ′′ < 0, so Ψ is turning downward toward Ψ = 0
as x increases. If E < V and Ψ < 0 we have Ψ′′ > 0, and Ψ is being turned upward
toward Ψ = 0. So for E > V, the general behavior is oscillatory. The trigonometric
functions sin(αx) and cos(αx) are simple examples of this behavior.

E < V : If E < V and Ψ > 0, we have Ψ′′ > 0, so Ψ is turning upward away from Ψ = 0.
If E < V and Ψ < 0 we have Ψ′′ < 0, and Ψ is being turned downward away from
Ψ = 0. So for E < V, the general behavior is exponential . The functions exp(αx)
and exp(−αx) are simple examples of this behavior.

Now suppose we are looking for a bound state of the system. The wave function
must fall off as |x| → ∞ fast enough so that < Ψ|Ψ >= 1 is possible. This immediately
rules out region (a), since in region (a), the wave function oscillates in at least one of
the directions |x| → ∞, so it does not fall off fast enough for normalizability. We can
also rule out region (c). In region (c) the sign of E − V is always negative, so the wave
function is always headed away from the Ψ = 0 axis as x increases. Imagine the wave
function is damped as x→ −∞. Now as x increases, the wave function is always turning
away from the axis, so if Ψ > 0, Ψ is always increasing and inevitably will explode as
x → +∞. We are left with region (b). Classically any energy in region (b) is allowed.
But in quantum mechanics, only certain energies are possible for physical states. We
again imagine starting at large negative x and choose the solution that is damped as
x→ −∞. If Ψ > 0 it will continue to increase as x increases, but does not do so for all x.
As x enters the region where E > V and classical motion is possible, the wave function
starts to turn back toward the axis. At an eigenvalue of H, the wave function will turn
over just enough to match onto a decaying exponential, resulting in a normalizable wave
function. It is clear that this cannot happen for an arbitrary energy. This is ultimately
the reason bound state energies are discrete in quantum mechanics or “quantized.”

A Certain Expected Value always exceeds E0 Suppose our system does have a
lowest bound state with energy E0. We form the ration

< Ψ|H|Ψ >

< Ψ|Ψ >



where |Ψ > corresponds to any normalizable state vector or wave function. We claim
that

< Ψ|H|Ψ >

< Ψ|Ψ >
≥ E0.

This result is intuitively obvious, and we show it as follows. We expect the eigenstates
of H form an complete set of states. Here we must include all bound states and all
continuum states. We will assume for simplicity that the bound states have negative
energy, and the continuum starts at zero energy. Then we can write a formula for the
identity as follows:

I =
∑
b

|Eb < Eb|+
∫ ∞

0
dEc|Ec >< Ec|,

where the |Ec > are non-normalizable states satisfying H|Ec >= Ec|Ec > . (The normal-
ization of the |Ec involves Dirac delta functions and will be discussed in a later section.)
Now consider the expression < Ψ|H|Ψ > for an arbitrary normalizable state |Ψ > . We
sandwich the identity just to the right of H. This gives

< Ψ|H|Ψ >=< Ψ|H
(∑

b

|Eb < Eb|+
∫ ∞

0
dEc|Ec >< Ec|

)
|Ψ >

Letting H act and writing the matrix elements, we have

< Ψ|H|Ψ >=

(∑
b

Eb < Ψ|Eb >< Eb|Ψ > +
∫ ∞

0
dEcEc < Ψ|Ec >< EcΨ >

)
.

Now pull out a factor of E0 from every term, and write

Eb

E0

= 1 +
Eb − E0

E0

,

and likewise for Ec/E0. We now have

< Ψ|H|Ψ >= E0

(∑
b

(1 +
Eb − E0

E0

)| < Ψ|Eb > |2 +
∫ ∞

0
dEc(1 +

Ec − E0

E0

)| < Ψ|Ec > |2
)
.

In this formula the “1” terms just add up to E0 < Ψ|Ψ >, so altogether we have

< Ψ|H|Ψ >

< Ψ|Ψ >
= E0+

1

< Ψ|Ψ >

(∑
b

(
Eb − E0

E0

)| < Ψ|Eb > |2 +
∫ ∞

0
dEc(

Ec − E0

E0

)| < Ψ|Ec > |2
)
.

The terms which add onto E0 are all either positive or zero, so we have our result

< Ψ|H|Ψ >

< Ψ|Ψ >
≥ E0 (3)

Nothing in this argument really depended on the system being one dimensional, and in
fact the result Eq.(3) is generally true.



The Ground State Wave Function Has No Zeroes Let us return to a one di-
mensional system. We will assume that at least one bound state exists. Our goal in
this section is to show that the wave function for the lowest energy bound state cannot
have zeroes, i.e. it must be of the same sign (say positive) for all x. We start from the
expression

< Ψ|H|Ψ >=
∫ ∞
−∞

dxΨ∗(x)

(
− h̄2

2m
∂2
x + V (x)

)
Ψ(x)

Let us integrate the kinetic energy operator term by parts. This gives

∫ ∞
−∞

dxΨ∗(x)(− h̄2

2m
∂2
x)Ψ(x) =

∫ ∞
−∞

dx
h̄2

2m
|∂xΨ(x)|2.

The “surface” terms from x = ±∞ vanish since Ψ(x) is assumed to be normalizable. We
now have

< Ψ|H|Ψ >

< Ψ|Ψ >
=

∫∞
−∞ dx( h̄2

2m
|∂xΨ(x)|2 + V (x)|Ψ|2)∫∞
−∞ dx|Ψ(x)|2

(4)

Let us now assume that we have an eigenstate of H satisfying

H|Ψ >= E|Ψ >,

and further that the wave function Ψ(x) has a linear zero at x = x0. We will show that
|Ψ > cannot be the ground state of the system. We will do this by constructing another
wave function Ψ′ which satisfies

< Ψ′|H|Ψ′ >
< Ψ′|Ψ′ >

< E.

This shows that |Ψ > is not the ground state, since if it were, according to Eq.(3) any
other state would need to increase the ratio of expected values. We construct Ψ′(x) as
follows. First we flip over the wave function for x > x0. This gives a function which
has one sign (say positive) for all x. The “flipped” wave function is not quite acceptable
however, since if Ψ(x) ∼ C(x0−x) near x0, the flipped wave function will be ∼ C|x0−x|.
This is unacceptable right at x0 since it has a discontinuous derivative. We solve that
problem by smoothing the function near x = x0. An acceptable smoothing would be to

replace C|x0 − x| by C
√

(x0 − x)2 + ε2 where ε is very small. So Ψ′(x) is constructed

by first flipping Ψ(x) beyond x0 and then smoothing it near x = x0 so there is no

discontinuity in the derivative at x0. As can be seen by examining C
√

(x0 − x)2 + ε2,

Ψ′(x) will have a smaller magnitude for its derivative than Ψ(x) in a small region right
near x0. But this will lower the term in |∂xΨ|2 in Eq.(4). In other words, the wave
function Ψ′(x) has a slightly lower kinetic energy expected value than Ψ(x). This means
that the numerator in Eq.(4) has decreased. It is easy to see that flipping followed by
smoothing near x0 results in the normalization integral in the denominator of Eq.(4)
increasing. The net result is that if we substitute Ψ′ into Eq.(4), the result is smaller



than E, so this means that E was not the ground state energy and Ψ(x) was not the
ground state wave function. This argument rules out an eigenstate with a wave function
that crosses the axis being the lowest state. Here we have assumed the zero was linear,
but higher order zeroes can also be ruled out. The general pattern in d = 1 is that the
lowest bound state has no zeroes, the first excited bound state has one zero,etc. Much
of this discussion carries over to higher dimensions. In higher dimensions, zeroes lie on
surfaces not points, but still for many systems, the lowest state wave function has no
zeroes.

Variational Principle Suppose |Ψ > is an eigenstate of the Hamiltonian, satisfying

H|Ψ >= E|Ψ >

The variational principle states that

< Ψ|H|Ψ >

< Ψ|Ψ >

is stationary against small changes in the state vector. To state this more precisely, let
us consider a varied state vector,

|Ψ′ >≡ |Ψ > +|δΨ >,

where |δΨ > is “small” in the following sense:

< δΨ|δΨ > << < Ψ|Ψ > .

This means that the vector |δΨ > has a much smaller length than |Ψ >, where length is
meant in the Hilbert space sense.

Now, let us substitute |Ψ′ > into our expresssion. The goal is to show that as long
as we keep only terms linear in small quantities, the result is the same as using |Ψ > .
Proceeding, we form

< Ψ′|H|Ψ′ >
< Ψ′|Ψ′ >

=
(< Ψ|+ < δΨ|)H(|Ψ > +|δΨ >)

(< Ψ|+ < δΨ|) · (|Ψ > +|δΨ >)
.

Next, we use the fact that |Ψ > is an eigenstate of H. Our expression becomes,

< Ψ′|H|Ψ′ >
< Ψ′|Ψ′ >

=
E(< Ψ|Ψ > + < δΨ|Ψ > + < δΨ|Ψ >)+ < δΨ|H|δΨ >)

< Ψ|Ψ > + < δΨ|Ψ > + < δΨ|Ψ > + < δΨ|δΨ >)
.

We note that if we drop terms quadratic in δΨ in numerator and denominator, the result
is E, or in other words the expression is stationary to linear order in δΨ. We have then

< Ψ′|H|Ψ′ >
< Ψ′|Ψ′ >

= E +O(δΨ)2



If it is the ground state of the system that is being considered then the expression is
not merely stationary, but is a minimum. This is used in practice to search for a good
approximation to the ground state energy and wave function. The trial wave function
may depend on several parameters. The expected value of H in the trial state divided
by its norm will then be a function of these parameters. Searching for the minimum in
the parameter space brings the system closer and closer to the ground state.


