
1 Classical Mechanics

Classical mechanics cannot explain quantum phenomena like the stability of atoms, sharp
atomic spectral lines, the spectral distribution of black body radiation, chemical reac-
tions, etc. Nevertheless, classical and quantum mechanics are closely connected. Just
as geometrical optics can be regarded as the short wavelength limit of wave optics, so
classical mechanics can be regarded as the short wavelength limit of quantum mechanics.
The formulation of quantum mechanics by Hamilton is the most useful for seeing the
connections between classical and quantum mechanics. Schrödinger made brilliant use of
Hamilton’s ideas in writing down his wave equation. Dirac and Feynman used Hamiton’s
princple to formulate the path integral approach to quantum mechanics.

Lagrangians We are used to thinking of the Lagrangian of a system as an elegant
way to find the equations of motion. The system in general may have several coordinates,
usually denoted as qk. The qk are usually linear or angular coordinates, but they may
be more general. The Lagrangian depends on the qk, and their time derivatives, usually
denoted as q̇k, i.e.

q̇i ≡
dqi
dt

.

From the generalized coordinates and the Lagrangian, we define generalized momenta by

pk =
∂L

∂q̇k
. (1)

In terms of the qk and pk, the equations of motion are

ṗk =
∂L

∂qk
. (2)

Here are some sample Lagrangians

• Harmonic oscillator
L =

m

2

(
q̇2 − ω2q2

)
• Forced harmonic oscillator

L =
m

2

(
q̇2 − ω2q2

)
+ F (t)q

• Particle constrained to a sphere of radius a.

L =
m

2
a2
(
θ̇2 + (sin θ)2ϕ̇2

)
• Central force motion in a plane

L =
m

2

(
ṙ2 + r2ϕ̇2

)
− V (r)



• Central force motion in three dimensions

L =
m

2

(
ṙ2 + r2θ̇2 + r2 sin2 θϕ̇2

)
− V (r)

Note that there is nothing wrong with having an explicitly time dependent force or
potential in the Lagrangian. The harmonic oscillator with a time-dependent force is an
interesting model for more complicated systems.

Hamiltonians Given a Lagrangian, one can define a Hamiltonian,

H(qk, pk) =
∑
k

pkq̇k − L, (3)

where as the notation implies, in H we eliminate the q̇k in favor of the pk. Using the
Hamiltonian, the equations of motion are

q̇k =
∂H

∂pk
(4)

ṗk = −∂H

∂qk

Exercise 1 Find the Hamiltonians for the Lagrangians listed above. Write down the
equations of motion in Hamiltonian form.

Poisson Brackets Quantum mechanics is full of commutators and commutation re-
lations. It is less familiar that this type of structure also exists in classical mechanics,
through a quantity known as the Poisson bracket. Suppose we are in the Hamiltonian
formulation of classical mechanics, and we have two dynamical quantities A and B, both
of which are functions of coordinates and momenta. The Poisson bracket of A with B is
defined to be

{A,B} ≡
∑
pk,qk

(
∂A

∂qk

∂B

∂pk
− ∂A

∂pk

∂B

∂qk
) (5)

From the definition, it follows that the Poisson bracket of two quantities is anti-symmetric,

{A,B} = −{B,A}. (6)

Poisson brackets also satisfy many of the same rules that apply to ordinary derivatives.
For example,

{AB,C} = A{B,C}+B{A,C} (7)

Poisson brackets for any three quantities also satisfy the so-called Jacobi identity,

{A, {B,C}}+ {B, {C,A}}+ {C, {A,B}} = 0 (8)



The time rate of change of any quantity O is given by its Poisson bracket the Hamiltonian,

dO

dt
= {O,H}. (9)

For example it is easy to show using the definition of Poisson brackets, that

q̇k = {qk, H} =
∂H

∂pk
, ṗk = {pk, H} = −∂H

∂qk
(10)

Exercise 2 Consider an arbitrary function of the coordinates and momenta, O. Assume
O does not have explicit time dependence. Derive the equation of motion for O (dO/dt)
by differentiating O and using Hamilton’s equations, Eq.(4). From this result and the
definition of the Poisson bracket, show that O satisifies Eq.(9).

Let us compute the Poisson brackets for a few familiar quantities. We have

{qk, pj} = δkj. (11)

Suppose we have a particle moving in three dimensions. It is natural to use the carte-
sian quantities xk and pj to describe coordinates and momenta. The orbital angular

momentum is L⃗, given by
L⃗ = x⃗× p⃗, (12)

or
L1 = x2p3 − x3p2, L2 = x3p1 − x1p3, L3 = x1p2 − x2p1

For the Poisson brackets of different components of L⃗ it is easy to show that

{Lj, Lk} = ϵjklLl (13)

Exercise 3 Check Eq.(13) for the cases j = 1, k = 2 and j = 3, k = 2.

These examples show that the algebraic structure of quantum mechanics has a counter-
part in classical mechanics. In quantum mechanics, dynamical quantities like the com-
ponents of orbital angular momentum become operators. Dirac proposed that in the
transition from classical mechanics to quantum mechanics, the Poisson bracket should
be replaced by a multiple of the quantum commutator. Specifically, Dirac’s proposal was

{A,B} −→ −i

h̄
[A,B]. (14)

In Eq.(14), the curly brackets {·, ·} imply a Poisson bracket, while the ordinary brackets
[·, ·] imply a quantum commutator, and we have denoted the operators corresponding to
the classical quantities A and B by A and B.

Dirac’s proposal is accurate for fundamental relations like Eq.(13). It is also generally
safe to use it in Cartesian coordinates. However, the replacement of the Poisson bracket
between a coordinate and a momentum, Eq.(11) by −i/h̄ times the quantum commutator
can cause problems in curvilinear coordinates. This will be explored in a later section of
these notes.



Action We are used to the Hamiltonian playing the starring role in quantum mechanics.
However, in many modern applications, path integrals, quantum field theory, etc. it is
the Lagrangian that is most important, and in particular the action, the properties of
which are explored in the next few sections. The action, denoted as S, is defined as

S =
∫ 2

1
L(qk, q̇k)dt, (15)

i.e. the time integral of the Lagrangian between fixed endpoints. Fixed endpoints means
that the initial (qk(t1)) and final (qk(t2)) values of the coordinates held fixed. To visualize
what this means, think of a pitcher in baseball, throwing a baseball intended to hit a
specific location in the strike zone. The initial coordinate is the location of the ball as it
leaves the pitcher’s throwing hand. The final coordinate is the location of the ball when
it reaches the target in the strike zone. The time interval would be the time it takes for
the pitch to travel on its path, about 0.5 seconds for a very good fastball. As opposed to
thinking about initial positions and intial velocities, in considering the action one thinks
of inital and final coordinates.

The classical path is the solution of the equations of motion which connects the qk
from their initial to their final values. Hamilton’s principle is the statement that the
action is stationary to small variations around the classical path. To see what this means
let us replace all the qk(t) by qk(t) + δqk(t), where the δqk are regarded as small and we
will only keep quantities to first order in the δqk. The requirement that the endpoints are
fixed is imposed by demanding that δqk(t1) = δqk(t2) = 0. Let us write the variation of
the action, keeping only first order terms. We have

δS =
∫ 2

1

∑
k

(
∂L

∂q̇k
δq̇k +

∂L

∂qk
δqk

)
dt. (16)

Now integrate the first term by parts, obtaining∫ 2

1

∑
k

∂L

∂q̇k
δq̇k =

∑
k

∂L

∂q̇k
δqk]

t2
t1
−
∫ 2

1

∑
k

d

dt

(
∂L

∂q̇k

)
δqk. (17)

But the first term vanishes because the δqk vanish at t = t1 and t = t2. Going back to
δS, we now have

δS =
∫ 2

1

∑
k

(
− d

dt
(
∂L

∂q̇k
) +

∂L

∂qk

)
δqkdt. (18)

Now the δqk are infinitesimal but arbitrary. The only way to insure that δS vanishes is
to demand that the coefficient of each δqk vanish in the integrand, or

− d

dt
(
∂L

∂q̇k
) +

∂L

∂qk
= 0, (19)

which are just the equations of motion. So if we consider the action as a function(al)
of the qk(t), the statement is that the action becomes stationary to first order when the
qk(t) obey the equations of motion, i.e. the qk(t) are on the classical path.



Free Particle and General Features of the Action To illustrate some features of
the action, consider the motion of a free particle in one dimension, starting at x1, arriving
at x2, over a time interval t. For a free particle, from elementary physics we have

x(t′) = x1 + vt′, (20)

Now the particle arrives at x2 at t′ = t, so

x2 = x1 + vt (21)

which gives

v =
x2 − x1

t
. (22)

The Lagrangian is

L =
m

2
ẋ2 =

m

2
v2 (23)

where v is of course constant. The action is then

S =
∫ t

0
L(x(t′)dt′ =

m

2
v2t =

m

2

(x2 − x1)
2

t
(24)

Exercise 4 Consider the action for the varied path

x(t′) = x1 + vt′ + δx(t′)

where

δx(t′) = ϵ sin(
πt′

t
).

Compute the action for the varied path. Show that the term of O(ϵ) vanishes. Is the
action a min or a max here?

Although this example is very simple, the action of Eq.(24) allows illustration of sev-
eral general properties of the action. The action has been computed with fixed endpoints,
over a fixed time interval. However, important physical quantities are delivered by dif-
ferentiating with respect to these quantities. Let us first take the derivative with respect
to the final endpoint, x2. We have

∂S(x2, x1, t)

∂x2

= m
(x2 − x1)

t
= p2, (25)

where p2 is the final momentum. Likewise, if we differentiate with respect to x1, we get

∂S(x2, x1, t)

∂x1

= −m
(x2 − x1)

t
= −p1, (26)

where p1 is the initial momentum ( of course the same as the final here.) Both of these
results generalize, and are rather easy to establish. To do so, return to Eq.(17), and now



allow the δqk to be non-vanishing at the end points. If the qk(t) satisfy the equations of
motion, the variation of the classical action will only come from the endpoints, and we
have

δS =
∑
k

∂L

∂q̇k
δqk]

t2
t1
=
∑
k

(pk(t2)δqk(t2)− pk(t1)δqk(t1)) , (27)

where we used Eq.(1). Eq.(27) is equivalent to the equations

∂S(qk(2), qk(1), t)

∂qk(2)
= pk(2) (28)

∂S(qk(2), qk(1), t)

∂qk(1)
= −pk(1)

It is important to emphasize that the δS referred to in Eqs.(28) is the variation of the
action computed for the classical path, around its endpoints. If we were not at the
classical path, there would still be an integral over time.

The other derivative we can take is with respect to time. For our free particle, we get

∂S

∂t
= −m

2

(x2 − x1)
2

t2
, (29)

which is minus the energy of the particle. This is again easy to establish in general. We
are going to vary the action computed for the classical path by changing the time interval
slightly. We will vary only the final time. t −→ t+ dt. So imagine the classical path that
hits the same final point, but at t + dt. The extra bit in the integral will contribute a
term

L(2)dt

to δS. But we also need to include the term that comes when we integrate by parts,∑
k

pk(2)δqk(2).

Now the δqk(2) are not arbitrary, they must be chosen so the particle arrives at qk(2) at
time t+ dt.

Exercise 5 Show that the requirement that the particle arrives at qk(2) at time t+ dt
is satisfied by

δqk(2) + q̇k(2)dt = 0

Putting the terms in δS together, we have

δS = −
(∑

k

pk(2)q̇k(2)− L

)
dt, (30)



which establishes that

−∂S(qk(2), qk(1), t)

∂t
= H, (31)

where H is the Hamiltonian of the system, which equals the energy if the potential is
time-independent.

Hamilton-Jacobi Equation Using the results of the previous section we can write
an important differential equation involving the action. This is an equation satisfied by
the classical action, meaning the action for starting at one point, and ending at another,
with the system connecting the two points being on its classical path. We write the result
for a particle of mass m moving in three dimensions (k = 1, 2, 3,) in a potential V. We
have

∂S

∂t
+
∑
k

1

2m

(
∂S

∂qk

)2

+ V (qk) = 0. (32)


