Creation and Destruction Operators and Coherent
States

WKB Method for Ground State Wave Function We first rewrite the ground
state harmonic oscillator wave function,
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In the notes on imaginary time path integrals, we obtained this formula from the imag-
inary time propagator for the harmonic oscillator. Before introducing creation and de-
struction operators, let us explore the exponential factor in the ground state wave func-
tions. The method used is called the WKB (for Wentzel, Kramers, and Brillouin) method
and involves a quantity closely related to the action used in the path integral discussion.
We start by assuming the following form for a bound state wave function,
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Note that W has the same dimensions as & and the action S. Then we have
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Let us use this formula in the Schrédinger equation, allowing an arbitrary potential for
the moment. From
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we obtain
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Note that the first two terms on the left side are independent of 4. The method we are
using is semiclassical in which case it makes sense to try to solve the equation order by
order in h. Now consider the eigenvalue F, in particular, suppose we are looking for the
ground state of the system. For an oscillator the classical lowest energy is zero, and the
actual ground state is hiw/2. Let us follow this suggestion and assume for other potentials
as well that for the ground state £ ~ O(h). Then if we make the terms independent of
h cancel, we get
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which implies that
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The choice of x( is not completely specified. However, if we are looking for the ground
state of the system, it makes sense to choose xy at the minimum of V(z). Returning to
the oscillator, we obtain
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which when substituted in Eq.(2) gives the correct form of the oscillator ground state
wave function. If we go further and match the O(h) terms in Eq.(3), assuming E is
proportional to h, we get
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Using W (z) = mwzx, this gives
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which is the correct answer for the oscillator. This general method can be applied to
other smooth potentials, but it is only exact for the oscillator. We will not pause to
study the function W (z) further. The relation of W to the action S is basically that one
trades the time t for the energy F, by making a so-called Legendre transform. More on
this can be found in “Classical Mechanics”, by H. Goldstein. There is also much more
to the WKB method than we have discussed here. It is more typical to use it for highly
excited states of a particle moving in a smooth potential. In that case the particle can
be in both the classically allowed region and the classically forbidden region. For the
classically allowed region the form
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is the appropriate one to use, and the factor of 7 in the exponent is replacedd by -1
when x moves into the classically forbidden region. For more on WKB and semiclassical

quantum mechanics in general see Shankar, sec. 16.2, Gottfried and Yan, sec.2.8 and
Chapter VII of “Quantum Mechanics,” by Landau and Lifshitz.

Creation and Destruction Operators Now let us turn to the creation and destruc-
tion operators using our solutions of the Heisenberg equations of motion. Rewriting our
previous results,

X(t) = X coswyt + sin wot, (4)
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and
P(t) = P coswyt + mwpX sinwot. (5)



By taking matrix elements of these equations between eigenstates, we found by matching
time dependence on both sides,
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and further there is a set of states with energies hw(n + 1/2), n =10,1,2,.... It is clear
from these results that the operator
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can only lead to |n — 1 > when acting on |n >, while
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can only lead to |n+1 > when acting on |n > . Further since all states must have positive
energy, we must have
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Let us multiply these operators. We have
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Multiplying by mw?/2 and using [PX — X P] = —ih, we have
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Dividing by hw, we have
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The right hand side is dimensionless. We now define
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The commutator of a with af follows from the X, P commutator. We have
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The harmonic oscillator Hamiltonian in terms of a and a' is

1
H = hw(a'a + 5)

Rearranging Eqs.(4) and (5), we have

X(t) = ; [(X - z’ﬂi) expliwt) + (X + iﬂi) exp(—m)} ,

or using the definitions of a and a', we have

X(t) = QTZW [a exp(—iwt) + a' exp(iwt)} (6)

Writing this equation one more time,

so we have
a(t) = aexp(—iwt), at(t) =af exp(iwt),

where a(t) and af(t) are the Heisenberg operators corresponding to the Schrédinger op-
erators a and af. The corresponding expressions for P(t) follow from these,

P(t) = mcilf = —i@ [a exp(—iwt) — a' exp(iwt)} (7)

Expressions like Egs.(6) and (7) occur in many more general problems, basically any

problem that can be expanded in harmonic oscillators. Examples are photons, phonons,

and the so-called “vector mesons” of particle physics, such as the W and Z particles.
Let us now find the matrix elements of a and a'. Using
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But ]
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so we have
hwn = hw < nla‘aln >

Now from our results above, we know that acting on |n > a must lead exclusively to
|In—1 > so |n—1 > is the only intermediate state that can be reached when we sandwich
the identity between a' and a. Cancelling the factor of hw, we have

n=<nla'ln—1><n—1laln >=| <n—1laln > |?
which gives
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Choosing the possible phase factor to be 1, we have
<n—1lajn >=vn =<nla’'ln — 1 >

Rewriting these, we have

aln >=nln — 1>, alln>=/(n+1D)n+1>.
which gives
a‘aln >=n|n >
so a'a is a number (of excitations) operator.

Let us show how to construct the states |n > using a. Writing out the first few states,
we have
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Using these equations to express everything in terms of |0 >, we have
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We can use this last equation to find the wave functions for all the states. Using
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This formula will generate the explicit form for < x|n > for any n.



Coherent States Coherent states are an important class of states that can be realized
by any system which can be represented in terms of a harmonic oscillator, or sums of
harmonic oscillators. They are the answer to the question, what is the state of a quantum
oscillator when it is behaving as classically as possible? As a practical example,the state
of photons in a laser is quantum mechanical, but also behaves classically in many ways.
Coherent states are relevant to this situation.

The definition of a coherent state |o > is that it is an eigenstate of a, the destruction
operator, ala >= a|a >, with < aJa >= 1. From its definition, a is certainly not a
self-adjoint operator, so it if has eigenstates at all, the eigenvalues need not be real, and
in fact the value of « is any complex number.

Minimum Uncertainty It is easy to show that coherent states exist, but let us first
note one of their most characteristic properties, namely they have minimum Heisenberg
uncertainty. Let us first express X and P in terms of a and af. We have

X = zy(a+ah)
P = —ipy(a—al)

where
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Now consider various expected values, < «a|X|a > < a|X?|la >, < a|Pla >, and
< a|P?|a >. First note that

<alala> = a<ala>
<ald'la> = (<alala>)" =a* <ala>.

Finally, using < aa >= 1, we have

<alX|la> = zo(la+a’)
<alPla> = —ipo(la—a”)

In calculating < a|X?|a > and < a|P?|a >, the order of operators must treated with
some care. We present the details for < a|X?|a >. We have

< a|X?a>=23 < al(a+a')(a+a)|a >= 22 < a|(aa + aa' + a'a + a'al)|a >

Most of these evaluate directly. For example, < alaala >= o? < ala >, < alala|la >=
a < ala’la >= aa* < ala >, and < ala’a’|a >= (< alaala >)* = (a*)? < ala > . For



< alaa’|a >, we use the commutator [a,a'] = 1 and rewrite it as < «|(a’a + 1)|a >=
(aa* + 1) < afar > . Finally, using < a|a >= 1, we have

< a|XX|a >= zi(aa + 2aa* + a*a* + 1) = ] ((a +a*)? + 1)
From the results so far, we have
(AX)? =< a|XX|a > —(< a|X|a >)* = z3.
Entirely similar steps give
(AP)* =< a|Pla > —(< a|Pla >)? = p?.

Putting these together, we have

(AX)(AP) = om = &

which is the statement of minimum Heisenberg uncertainty. The steps just carried out
have been done in the Schrodinger representation at ¢t = 0. They go through equally well
if we consider the uncertainties in X and P at an arbitrary time. This would be done by
using Heisenberg opererators X (¢) and P(¢) in the above equations, which simply replace
a by aexp(—iwt) and a by al exp(iwt). The uncertainties in X () and P(t) remain x
and pg, so minimum uncertainty continues to hold.

Existence To demonstrate that coherent states exist, we first expand them in en-
ergy eigenstates of the harmonic oscillator,

la>=)"|n><nla>.
n

Using ala >= a|a > and a|n >= /n|n — 1 >, we have

Yan><nla>=> Vnln—1><nla>=> Vn+1ln><n+1la>.

Matching the coefficient of |n > on both sides gives
a<nla>=vVn+1l<n+lla>
Applying this equation for n =0,1,2,... we have

<lla> = a<0a>
<2a> = a<lla>/V2 = a®<0a>/V2
<3la> = a<2a>/vV3 = o®<0la>/V3-2



The general result is then
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Demanding normalization, we have
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or
1 = exp(|al?)] < 0]a > |*.

Choosing a phase, we can set < 0la >= exp(—|a|?/2). We now have

2 n
la >= exp(—w;l) zn: jm]n >

This is a concrete formula for |a > . Another, very convenient version is to make use
of one of our previous formulas expressing |n > in terms of repeated applications of af.
This gives
a” al?
|ov >= exp(— ‘— Z —(a")"|0 >= exp(— o] =) exp(aah)|0 >
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Level of Excitation Given a coherent state, we may ask how the level of excitation
and average energy are related to a.. Define the number operator N = afa. When acting
on an energy eigenstate, we have N|n >= n|n > . Taking the expected value of N in a
coherent state, we obtain

< N >=< a|N|a >=< a|a'ala >= a < ala’|a >= aa”
This allows us to express «a as
a =< N > exp(i¢),

where ¢ is a phase angle. Now for the expected value of the Hamiltonian, we have
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< H >=< a|H|a >= hw(< N > —1—5) = hw(aa™ + 5

So given a certain average energy, the modulus of « is determined. To get insight into
the meaning of the phase, consider the expected value of X () in a coherent state. We
have

< a| X (t)|a >= zo(aexp(—iwt) + a* exp(iwt) = zo|a|(exp(—i(wt — ¢)) + exp(i(wt — ¢)),

so < X(t) >= wxo|a|2cos(wt — ¢). From this we can see that if ¢ = 0, the oscillator
expected value is that of a classical oscillator started at maximum displacement with



zero velocity, while if ¢ = 7/2, the expected value is that of a classical operator started
at zero displacement with maximum velocity.

So far we see that in a coherent state, the value of || is in one-one correspondence
with < N > or < H > . However, a coherent state is certainly not anywhere near
an energy eigenstate. There is considerable spread around the n-value determined by
< H > . To quantify this consider P,, the probability of a coherent state being found in
the n-th eigenstate of the oscillator. We can write

(lof*)"

Py =] <nla> P = Y2 exp(—faf?)

Recalling that < N >= |a|?, we may write P, as

<N >"

P,
n!

exp(— < N >),

which is a Poisson distribution. A well-known property of a Poisson distribution is that
(AN)? =< N? > — < N >?

is < N > . So there is considerable spread about < N >, but for large < N >, the
average energy and level of excitation will appear to be well-defined. For example if
< N >= 100, then AN = 10. Thus an oscillator in a coherent state with a reasonably
large ||, will appear to have a well-defined energy to a classical observer. Nevertheless
many states of excitation near the one defined by < N > are occupied.



