Continuum Physics in d=1

We can understand a number of properties of one dimensional scattering by considering
an off-diagonal current. We define
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and
Now if both ¥, and W, satisfy the time-dependent Schrodinger equation, we have.

The current as defined with two different solutions is not necessarily a physical object.
If we have the same two functions in the current, then it does have a physical meaning
if we use properly normalized solutions of the Schrodinger equation. For now, we use
continuum solutions which are not normalized in any particular way.

Now suppose both states are energy eigenstates with the same energy F.

Et Et
Wy~ GXP(—Zf) Wy ~ eXp(—Zf)
Then
8tp = O,
so we also have
8zjx = 07

so the current must be independent of x.
To see what can happen, let us try some examples with free particle wave functions.
First we try plane waves traveling in the same direction.

U, = exp(tkz) ¥y = exp(ikx)

This gives
hk
Jpy = —
2m

Next, try two plane waves traveling in opposite directions.
U, = exp(ikz) Vo = exp(—ikx)

This gives
Jyp = 0.
These two results will be useful in what follows. Now consider an eigenfunction when a

potential is present. We take the potential to fall to zero as |x| — oo. The standard setup
is to have a plane wave incident from x = —oo, so the wave function takes the forms

Ui () — exp(ikz) + Rexp(—ikx) z << 0,



and
Ui(z) = Texp(ikz) z>>0

In these notes R will be called the reflection coefficient and T will be called the
transmission coefficient. The makes sense because they are coefficients of reflected
and transmitted waves, respectively.

Let us see what we can learn by considering the current associated with Wy.

Using our results from the two examples, we have

hk
J,=—(1—|RP*) z<<0,
m
and -
Jo = —|T]> z>>0.
m

Since J, must be independent of x, we have
1— |R]2 = |T}?

This simple result will contain extra factors of wave-vectors if the media at  >> 0 and
x << 0 have different wave-vectors.

Wave Packets Although most of our attention will be on the solutions which have
plane wave behavior at infinity, it is worthwhile to briefly consider the time dependence
of a normalizable solution of the Schrodinger equation. We will concentrate on the region
x << 0. The discussion for z >> 0 is completely analogous. Our scattering solutions
with definite £ or definite energy in this region have the behavior

Uy (z) — exp(ikz) + R(k) exp(—ikx)

In order to have a solution of the Schrodinger equation that would describe a real exper-
imental situation, we need to form a wave packet by integrating over k. We write

U(x,t) = / dk(k) exp(—iwgt) (exp(ika) + R(k) exp(—ikz)),

where wy = (hk?)/2m. We will assume that ¢(k) is a smooth function, sharply peaked
around k = kg, such as

alk — ky)?
o(k) = N esp(~ 2oy

It is typically true in any scattering experiment that the functions that describe the
scattering (in this case R(k) and T'(k)) are slowly varying in & compared to the variation



of ¢(k). This makes it a good approximation to replace R(k) by its value at k = k. Then
we can get a good approximation to ¥(z,t) for x << 0 by computing the integral

U(z,t) ~ /dkgzﬁ(k;) exp(—iwgt)(exp(ikx) + R(ko) exp(—ikz)).

Setting k = ko gives us standard Gaussian integrals to do. We have the formula

(SIZ’ — ’Uot)2 (SIZ’ + Uot)Q
) ~ —_ —_— 1
(1) (exp( 2zt 7)) T Rk ew(—grs ) | (1)
where we have not written phase factors multiplying each term, and
ht hk
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The first term in Eq.(1) is negligible except in a narrow range around = = vgt. The second
term is negligible except in a narrow range around x = —vyt. So for z << 0 and t << 0,
only the first term is “on”, while x << 0 and ¢ >> 0 only the second term is “on.” For
the transmitted wave, the packet is negligible except near z — vyt and this term will be
“on” for x >> 0 and ¢t >> 0. This brief discussion shows that if packets are built up, the
common sense behavior of scattering is obtained.

Parity Invariance We can obtain additional results when the potential is even under
r— —,
V(z) = V(-x)
When this is true, the Hamiltonian is parity invariant, parity is a good quantum number,
and solutions will be of definite parity, either even or odd. Let us consider the even parity
case first. We define
U, (x) = Vp(z) + Ug(—2)

Using our previous large |z| forms, we have
V. (x) = (T + R) exp(ikz) + exp(—ikx) x >> 0,

and
U .(x) = (T + R) exp(—ikx) + exp(ikz) z <<O0.

Again, just as before, the current must be independent of x. Computing the current, we
have

hk
= — TP> -1
Ju 2m(|R+ ’ ) x>>0,
and .
Jo=—0—|R+T*) z<<0.

2m
These two expressions must be equal. The only way this can happen is if both vanish,
so we have

IR+ T]*=1.



This makes sense. An even parity solution sends in a particle from x >> 0 and one
from x << 0 as well. What goes in must come out, so there can be no net current. The
difference between this case and the standard one of a particle only incident from the left
is symmetry.

Turning to odd or negative parity, we have

U, (z) = (T — R) exp(ikz) — exp(—ikz) = >> 0,

and
U,(x) = (R —T)exp(—ikz) + exp(ikx) = << 0.

Again computing the current, we get

hk
= —(R-T -1
J, 2m(]l’i’ | ) x>>0,
and .
e=—(1—|R—-T :
J, 2m( |R I) z<<0

Just as for even parity, the only way the current can be independent of z is for it to
vanish, so we have

T - R?*=1
We have found that T'£ R are both of unit modulus, so we can write them as follows:
T+ R = z, = exp(2id,),
and
T — R = z, = exp(2id,).

The §, and 9, are called phase shifts. The reason for the factor of 2 in the exponents will
be explained later.

Even Parity Example To illustrate the discussion so far, we consider a square well
potential and look at the even parity continuum solutions. The potential is initially taken
to be repulsive, of strength V. We define

2 2mV,
=

The potential is zero for |z| > a, so we have the forms
U, = z.exp(ikz) + exp(—ikx) = > a,

and
U, = Acos(k'z) |z| < a.



The Schrodinger equation gives the relation
(K')? + k> = k?
It is useful in what follows to make the following definition.
¢ = exp(ika) & = exp(—ika).
Now we must match the value and derivative of the wave function at x = a. This gives,
Acos(Ka) = z.& + €,

and

—k' Asin(K'a) = ik(2.£ — ).
Taking the ratio of these equations, we have

ik(zeg - g)

—k' tan(k'a) = c1E
Ze

Solving for z., we obtain

~ ik — k' tan(k'a

- = (P k= Ftan(Ka)
ik + k' tan(k'a)

Note that |z.| = 1 as it must.

So far we have studied the repulsive square well. However, our results can easily be
adapted to the attractive case. We merely need to change the formula for k', so that it
reads as follows:

(K')? — K? = k?
Our previous formula for z,. still applies. Now we know that the attractive square well
always has a bound state. This can be seen in scattering quantities by taking

k — ia.

This takes k? — —a?. i.e. we go from the scattering region to the bound state region.
Doing this, we notice that
ze(ia) — 00

happens at
a =k tan(k'a)

which is just the bound state condition for even parity in an attractive square well. To see
what is going on in more detail, we multiply our even parity solution by (ik+ k" tan(k’a)),
the factor that appears in the denominator of z.. This gives

U = exp(—ikx)(ik + K tan(K'a)) + exp(ikz)(ik — k' tan(k'a))(€)?



Now let us let
k — ia.

We see that U/ becomes
U = exp(ar)(—a + k' tan(k'a)) + exp(—az)(—a — k¥ tan(k'a))(£)?

This is a solution of the Schrodinger equation, but is physically unacceptable unless
the coefficient of the exploding exponential vanishes. When that does happen, we have
a bound state. We see by looking at the equation for W/, that the vanishing of this
coefficient happens at

a =k tan(k'a)

which we found previously as the condition for z.(icr) = co. Summary: By analytic
continuation in k or the energy, scattering amplitudes reveal the presence of bound states
of the system, if they exist.

Phase Shifts We will discuss the odd parity case, since it is of the same form as three
dimensional scattering in the [ = 0 state. Considering the large x behavior, we write

U, (x) — exp(2id,) exp(ikx) — exp(—ikx) = 2i exp(id,) sin(kx + ).

The reason for choosing 26, in the exponent of z, is that the large x form then goes into
a factor times sin(kz + ,). The phase shift is a physically meaningful quantity, which is
determined by the potential. If the phase shift is positive, the sin reaches each value
at a smaller value of kx than it would for §, = 0. It is as if the wave function is “pulled
in” toward the origin. This case is characteristic of an attractive potential. Similarly,
if the phase shift is negative, the sin reaches its argument later in kx than it would for
0, = 0, and we say the wave function is “pushed away” from the origin. This case is
characteristic of a repulsive potential.

Integral Equation for Scattering The use of an integral equation for scattering is a
way to automatically build in the required behavior at large x. The reflected and trans-
mitted waves travel away from the region where the potential exists, and are therefore
outgoing waves. The integral equation makes this behavior automatic.

Start with the Schrodinger equation,

h? (hk)?

D2+ V)U = o

( om

2m

and re-arrange it to
(O + k)W = U(x) ¥,

where
2m

U(x):?

V(z).



The scattering situation can be represented as an input or zeroth order wave function,

plus a scattered wave,
U =040,

The zeroth order wave is a solution of the free Schrédinger equation,
(02 + k)W =0,
while the scattered wave satisfies
(02 + )V, = U(x)W.
These are both taken care of in the integral equation,

U(r) = 00(a) + / Go(x — 2)U(2) (2 )dr.

The free solution ¥ can take various forms; exp(ikz) if the goal is to calculate R and
T, or cos(kz) or sin(kz) if the goal is to work with definite parity solutions and obtain
Ze O 2,. The function G¢(z — ') is a scattering Green function, and must satisfy

(02 + K)Gy(z — o) = §(z — 2) (2)

From the integral equation, we see that the integration over z’ is restricted to the region
where the potential U is non-zero, essentially near the origin for a potential of restricted
range. To obtain the correct large |z| behavior for the wave function Wx(z), G5 must
have the following behaviors;

Gy ~exp(ik(z — ")) = >> 2,
and

Gs ~ exp(—ik(z —2')) x= <<
The final form of Gs(x — 2’) which satisfies all requirements is

! exp(ik|z — 2']). (3)

G = 5k

The conditions on large |z| behavior follow directly. The J-function behavior is derived
as follows. First compute a first derivative as x — z’. We have

0,Ga(x — 2) = 2;590(1 Fikle—a] 4. ) = 221_k(z‘l<:(9(x) (=) +..)

Computing a second derivative we obtain

1
. 72 _ AN _ /
0,0,Gs = ik iko(x — ') = d(x — 2'),



which shows that G¢(z — 2') contains the correct d-function behavior. From Eq.(2) we
have that G4(x — ') is the inverse of the operator (92 + k?). Writing this as an equation,
we have

Gy =< z|(0? + k*) Yo' > . (4)

To spell this out in more detail, we first write the action of (9 + k?), on a plane wave,
which gives
(0 + k%) < ok >= (—(K)? + k?) < 2|k’ > .
It follows that (9% + k*)~! must produce
(2 + )<zl >= (K + ) <ok > .

We may use this in Eq.(4) by sandwiching a complete set of wave-vector kets just after
the (02 + k?)~! operation. The latter is ambiguous until we specify a prescription for
handling the behavior when k" = k. This is done by an “ i€” prescription, which gives the
rule for detouring around the pole in the complex k' plane at k&’ = +k. The particular
choice that is made is what guarantees that G(x — ') will produce only outgoing waves.
The final formula for G5(x — 2’) represented as an integral over £’ is

1
k2 +ie — (k)%
(5)
Verifying that this formula gives Eq.(3) when the &’ integration is carried out is done by
contour integration, a subject not required for Physics 580. However, let us extract the
Fourier transform of G4. We may write

Gz — ') = / 2’;’ exp(ik (x — 2')) G4 (k).

dk’
Gs(z—2') = /dk' < x|k’ > 5 <K' >= /2— exp(ik'(z—1"))
m

1
k2 +ic — (k)

From Eq.(5) we find
~ 1
Gs(K') = , :
(¥) k? 4 ie — (k)2

(6)

Propagator, Time Dependent and Scattering Green Functions In this section
we relate three quantities which have been introduced thus far. For simplicity, we will
take the case of a free particle with

(ho.)*

2m

H=—

The quantity we have called the propagator is defined as

H(t—t’)’ ,

K(z,t;2',t") =< x| exp(— ' >,

and satisfies the equation,

(ih0y + (F;%L)Q)K(x, t;x' ) = 0. (7)



K(x,t;2’,t') is an object of interest in its own right, and of course is the basic quan-
tity in Feynman’s path integral formulation of quantum mechanics. Closely related to
K(z,t;2',t') is a quantity we can call the time dependent Green function defined as
follows:

Gr(z, ta ) = —%G(t VK (x,t; 2", 1),
where the subscript F is for Feynman, and 6(¢ — t') is a step function, defined as follows:
1 t>0
o) = { 0 t<0
The time dependent Green function satisfies a different equation than the propagator.

We have

(hd,)?

2
(ih0y + - VGp(z, t;2' ) = 6(t — ") K (x, t; 2", ') + (iho, + (FLZ?;) VK (x,t; 2", 1)

=0(t—t)o(x —2)

To get the last equality, we used: (1) 00(t —t') = d(t —t') (2)K(z,t;2,) =< x|z’ >=
d(z —2') and (3) Eq.(7).
Let us Fourier analyze Gg(x,t; 2’ t"). We may write
[ dkdw

Gr(x, t;2',t') = 95 exp(ik(z — 2')) exp(—iw(t — t'))Gp(k,w)

Applying the Schrodinger operator, we get

. (hax>2 R Y A %dﬁ . o o Y _(hk)2 ~
(tho+ 5 VGr(z, t;2' ) = - exp(ik(x—2a")) exp(—iw(t—t"))(hw 5 VG (k,w)
st — )0 —2) = [ P ik — o)) exp(—iw(t — #))
2m 27
Comparing the last two equalities, we have
(hk)?\ A _
(hw o )Gr(k,w) =1

Before dividing to get G r(k,w), it is necessary to give a prescription for what to do when
fiw = (hk)?/2m. This is a so-called “ie” prescription. The correct formula for Gr(k,w) is

~ 1
Crik,w) = (hw + ie — CR2)

2m

The quantity i€ is an infinitesimal positive imaginary number, and says that the pole of
Gr(k,w) is located at

hk)?
hw:(znz—iﬁ,



i.e. an infinitesimal amount in the lower half of the complex w plane. This prescription
will insure that in returning to real time by doing the integral over w, the factor 6(¢t —t')
will result. The relation between G and G will become clear if we use k' as the spacial
Fourier variable in both cases. Doing this for G, we have

K2 - 1

D G, ) =
2m F(w7 ) Zr;LL;Lw 4 Z'e o k/2

Now if we set hw = (hik)?/2m, we have from Eq.(6) that

h? - hk?

Ry
o2m F<2m7

K = G (K),
or returning to configuration space, we have

n* . hk?
Gs(z —2) = %GF(%, x—a')
So G, is related to G, or more accurately to the Fourier transform in time of G, with
the frequency evaluated at the energy of the scattering process divided by A. It should
be noted that our notation for the scattering Green function always implies an energy
for the scattering process. This is clear from the defining equation for G, Eq.(2).

The summary of this section is that G and G, are closely related quantities. In
practice, in discussing scattering from a static potential as covered in this section, G is
the appropriate quantity to use. If the potential is time dependent, G is the appropriate
quantity. In particle physics and condensed matter physics, the scattering is always time
dependent. In that case the object which generalizes our G is the correct one to use.



