
1 Quantizing in Curvilinear Coordinates

Classical mechanics can be written in any coordinate system, and the usual Lagrangian
and Hamiltonian methods apply. In this section, we explore the question of how to
quantize a system in curvilinear coordinates, using plane polar coordinates as an example.
Suppose we have a Lagrangian written in plane polar coordinates.

L =
m

2
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dr

dt
)2 + (r

dϕ
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)
− V (r, ϕ) (1)

Our first task is to find the classical Hamiltonian. From the Lagrangian of Eq.(1), we
have

pr =
∂L

∂ṙ
= mṙ, pϕ =

∂L

∂ϕ̇
= mr2ϕ̇,

where in general

Ȯ =
dO

dt
The classical Hamiltonian is given by

Hcl = prṙ + pϕϕ̇− L =
p2r
2m

+
p2ϕ

2mr2
+ V,

and the classical equations of motion are

ṙ =
∂Hcl

∂pr
=

pr
m
, ṗr = −∂Hcl

∂r
= −

p2ϕ
mr3

− ∂V

∂r

ϕ̇ =
∂Hcl

∂pϕ
=

pϕ
mr2

, ṗϕ = −∂V

∂ϕ

Let us try to quantize this system directly in plane polar coordinates. We label our
position kets by |r, ϕ > . Writing the norm of a state, we have

< Ψ|Ψ >=
∫

rdrdϕ < Ψ|r, ϕ >< r, ϕ|Ψ > .

We have again “sandwiched the identity” so we must have

I =
∫
rdrdϕ|r, ϕ >< r, ϕ|.

This must satisfy
I|r′, ϕ′ >= |r′, ϕ′ > .

Writing this out, we have

|r′, ϕ′ >=
∫
rdrdϕ|r, ϕ >< r, ϕ|r′, ϕ′ >

For this integral to give |r′, ϕ′ >, we must have

< r, ϕ|r′, ϕ′ >=
1√
rr′

δ(r − r′)δ(ϕ− ϕ′)



Operators We expect there to be operators R,Pr,Φ, Pϕ. If we follow the procedure
used in Cartesian coordinates, we would write commutation rules,

[R,Pr] = ih̄, [Φ, Pϕ] = ih̄

These are satisfied if

< r, ϕ|Pr|Ψ >=
h̄

i

∂

∂r
< r, ϕ|Ψ >,

and

< r, ϕ|Pϕ|Ψ >=
h̄

i

∂

∂ϕ
< r, ϕ|Ψ >,

We may now ask if Pr and Pϕ defined this way are self-adjoint. It will turn out that Pϕ

is self-adjoint but Pr is not. Let us consider Pϕ first. If Pϕ is self-adjoint, we must have

< Ψ2|PϕΨ1 >=< PϕΨ2|Ψ1 >

Defining the right hand side as (a), and the left hand side as (b), we have

(a) =
∫

Ψ∗
2(r, ϕ)(

h̄

i

∂

∂ϕ
Ψ1(r, ϕ))rdrdϕ,

and (b) is

(b) =
∫
(
h̄

i

∂

∂ϕ
Ψ2(r, ϕ))

∗Ψ1(r, ϕ)rdrdϕ

Showing that (a) = (b) is a simple exercise in integration by parts on ϕ, using the physical
requirement that wave functions must be periodic, i.e. Ψ(r, 0) = Ψ(r, 2π). So we have
that

Pϕ = (Pϕ)
†,

so quantizing naively was fine for Pϕ.
Let us turn to asking the same question for Pr. If Pr is self-adjoint, we will have

< Ψ2|PrΨ1 >=< PrΨ2|Ψ1 >

Again writing left and right hand sides out, we define

(a) =< Ψ2|PrΨ1 >=
∫

Ψ∗
2(r, ϕ)(

h̄

i

∂

∂r
Ψ1(r, ϕ))rdrdϕ,

and

(b) =< PrΨ2|Ψ1 >=
∫
(
h̄

i

∂

∂r
Ψ2(r, ϕ))

∗Ψ1(r, ϕ)rdrdϕ

We can get the relation between (a) and (b) by integration by parts in r. Doing so on
(a), we have

(a) =
∫
(
h̄

i

∂

∂r
rΨ2(r, ϕ))

∗Ψ1(r, ϕ)drdϕ



(The surface terms in the integration by parts vanish because rΨr(r, ϕ)Ψ1(r, ϕ) vanishes
at both r = 0 and r = ∞.) Our expression after integration by parts is

(a) =
∫
(
h̄

i

∂

∂r
Ψ2(r, ϕ))

∗Ψ1(r, ϕ)rdrdϕ+
∫
(
h̄

i
Ψ2(r, ϕ))

∗Ψ1(r, ϕ)drdϕ

=< PrΨ2|Ψ1 > +
∫
(
h̄

i
Ψ2(r, ϕ))

∗Ψ1(r, ϕ)drdϕ.

The presence of the extra integral term on the right hand side of the last equation means
that Pr is not self-adjoint. The problem is of course that the integration weight rdrdϕ
depends on r.

Modified Radial Momentum It turns out to be possible to modify Pr so the
result is self-adjoint. We define a new radial momentum operator by

< r, ϕ|P̃r|Ψ >≡ h̄

i
(
∂

∂r
+

1

2r
) < r, ϕ|Ψ >

This operator satisfies
P̃r = (P̃r)

†.

We may now try to construct a quantum Hamiltonian by using P̃r. This would give

H̃ =
P̃ 2
r

2m
+

P 2
ϕ

2mr2
+ V

Using this as on a wave function we would get

< r, ϕ|H̃|Ψ >=

{
− h̄2

2m

[
(
∂

∂r
+

1

2r
)(

∂

∂r
+

1

2r
) +

1
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∂2
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]
+ V

}
< r, ϕ|Ψ >

Working out the derivatives in terms of the Laplacian, we have

< r, ϕ|H̃|Ψ >=

{
− h̄2

2m
∆+

h̄2

4mr2
+ V

}
< r, ϕ|Ψ >,

where the Laplacian is the usual plane polar expression,

∆ =
1

r

∂

∂r
(r

∂

∂r
) +

1

r2
∂2

∂ϕ2

Our modified Hamiltonian has produced a sensible result, involving an extra term
O(h̄2) that must be added to the original potential. The fact that this extra term is
O(h̄2) means that it would disappear on going to the classical limit. However we can
argue against including this term by considering a free particle with V = 0. Here we
surely believe that the wave function can be built up out of plane waves, where

< x⃗|p⃗ >=
1

2πh̄
exp(i

p⃗ · x⃗
h̄

),



and all vectors are two-dimensional. For these plane waves the correct quantum Hamil-
tonian is (still free particle)

< r, ϕ|H|Ψ >= − h̄2

2m
∆ < r, ϕ|Ψ > .

Here we can certainly rule out the term h̄2/4mr2. Going back to the presence of a po-
tential, if the extra term is ruled out for a free particle, it should also be ruled out when
a potential is present.

Summary While it may be possible to construct momentum operators in curvilinear
coordinates which are self-adjoint, the correct procedure is to use the Laplacian as the
kinetic energy term in the Schrödinger equation, and not try to express the kinetic energy
as sums of squares of the modified momentum operators.

So for plane polar coordinates, if the classical Hamiltonian is

Hc =
1

2m
p2r +

1

2mr2
p2ϕ + V,

The correct quantum Hamiltonian is defined by

< r, ϕ|H|Ψ >=

{
− h̄2

2m
∆+ V

}
< r, ϕ|Ψ >,

where

∆ =
1

r

∂

∂r
r
∂

∂r
+

1

r2
∂2

∂ϕ2
.

Likewise, in spherical coordinates, the classical Hamiltonian will be of the form

Hc =
1

2m
p2r +

1

2mr2
p2θ +

1

2mr2 sin2 θ
p2ϕ + V.

The quantum Hamiltonian is defined by

< r, θ, ϕ|H|Ψ >=

{
− h̄2

2m
∆+ V

}
< r, θ, ϕ|Ψ >,

where ∆ is the usual Laplacian in spherical coordinates,

∆ =
1

r2
∂

∂r
r2

∂

∂r
+

1

r2
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

r2
1

sin2 θ

∂2

∂ϕ2
,

and in spherical coordinates, we have

< r, θ, ϕ|r′, θ′, ϕ′ >=
δ(r − r′)

rr′
δ(θ − θ′)√
sin θ sin θ′

δ(ϕ− ϕ′).


