1 Transformations and Dirac

Certain operations are required to preserve probability amplitudes. Examples are spacial
translations and rigid rotations. Regardless of the fact that classical and quantum me-
chanics are different, we demand that physics be unchanged upon carrying out certain
simple operations. The way this is implemented is what is different between classical and
quantum mechanics. Preservation of probability amplitudes is the quantum requirement.

Spacial Translations We will start with spacial translations as the simplest case.
Suppose we have a quantum state | > for which < z|¥ > is a “lump” centered at
x = 0. We want to perform a spacial translation by a, giving a transformed state |’ > .
We write

|V >=U(a)|V >, (1)

where U (a) is a unitary transformation. The unitary property of U will guarantee preser-
vation of probability amplitudes. We require

< QU >=< P'|V’ > . (2)
Now if
V' > = U(a)|¥ > (3)
| > = U(a)|® >,
we have

<N >=< UV >=< O|¥ >, (4)

where we used
<P =< Ud| =< O|UT,

which easily follows from the definition of adjoint.
We want to investigate the translation operator U(a). This operator must satisfy the
following requirements:
Ula) — I, a—0,

and

U(a1 + CLQ) = U(al)U(ag).

Together these two requirements are demanding that a translation can be built up out
of smaller steps, e.g. to translate 1nm we can do 10 steps, each of one A°.

Let us return to our lump. How are < z|¥ > and < x|V’ > related? We can see what
the result must be by simply drawing a picture, with < z|¥ > a blob centered near z = 0
and < z|¥’' > a blob centered near x = a. We satisfy the common sense requirement of
a rigid translation by writing the following equation,

<z —al¥>=<z|V >. (5)



To see that Eq.(5) is correct, substitute x = a in both sides. In both cases, we are at the
center of the “lump.” Note that Eq.(5) is really a common sense requirement. If [¥' > is
really a rigid translation of |¥ > by an amount a, then Eq.(5) has to hold.

As to the form of U(a), all of our requirements on U(a) will be satisfied if write

Ula) = exp(~i7P), (6)
where P is a self-adjoint operator. It is generally true that if
T = eXp<A)7

then
TT = exp(A").

This can be shown by expanding 7" out in an exponential series, and taking the adjoint
term by term. Let us write a few terms for U and UT. We have

a 1 —ia
= [—i-P+ —(—)?PP + ...
Ul(a) 7 +2(h) + (7)
1 7a
fa) = IT+isP+-(“2yepp4+ ...
U'(a) +zh —|—2(h) +

In going from U to UT we have used two properties of adjoints; (aT)" = o*TT, and
(TyTy)" = TYT]. Let us quickly show the latter using old notation. We have

(6, VTv) = (T, To)) = (I3T] 6, ¥) = (T1T2) "6, ).

The last equality gives the desired result. So we have that

Ut(a) = exp(i%P). 8)
But comparing to U(a), we see that UT(a) just has the sign in front of a reversed, meaning
the inverse of U(a), so we have

U'(a)U(a) =1, (9)

which is the unitarity requirement.
So if we take U in the form of Eq.(6), we have unitarity and U(a) — I, as a — 0.

Finally let us write out U(a; + a2) = U(a;)U(ag). We have

a1 + A

exp(—z'%P) exp(—i%P) = exp(—i :

P). (10)

This equation looks OK if we can add exponents as we do with numbers. Since both
exponentials involve the same operator P, adding exponents s valid here. When the
operators in the exponents are different, simply adding exponents is not valid in general,
but if the operators are the same as they are here, it is valid.



So our proposed form for U(a) satisfies all the general requirements we can impose.
We can learn more by returning to Eq.(5) and taking a small and working to linear order
in a. We may write

0
<x—a|\I/>:<x|\I/>—aa—<x|\I/>+... (11)
X
and a a
< x|V >=<z|l — iﬁP—F U >=< 2| > _iﬁ <z|P|¥>+.... (12)
Matching O(a) terms, we have
h o
<z|P|V >=—-— < z|¥ > . (13)

1 0x

This is a familiar looking equation. So far we have said nothing about the physical
meaning of the operator P. Instead, we have imposed general requirements. Before further
discussion of the physical meaning of P, let us generalize to more than one dimension.

Suppose we have a particle moving in two dimensions, the x and y directions. We
can now translate in either or both directions. A basic fact about translations is that
translations in different directions commute. Let a, be the amount of the translation in
the x—direction, and a, for the y—direction. We must have

Ulaz)U(ay) = U(ay)U(az), (14)

where now each direction has its own generator;

Ula,) = exp(—iggfg) (15)
Ula,) = exp(—i%Py).

Now we said previously that it was OK to add exponents if we have the same operator in
the two exponents. Here we have two different operators. The more general statement is

exp(A) exp(B) = exp(A + B) (16)

ifft AB = BA, or A and B commute. Now if P,P, = P,P,, we will have the desired
property .
U(az)U(ay) = Ulay)U(a,) = eXp(_%(axPx + a; P)) (17)

so we can translate in different orders, or just perform one direct translation.
Now by studying small a, and expanding to linear order, we can find that

h o
P U >= - = W 18
< ,y|P,| iay<w,y! > (18)



along with

Lo
<X,y PV >= —— < z,y|¥ > (19)
1 Ox

Clearly in three dimensions, we will have
3 he
< Z|P|V >= =V < Z|¥ > (20)
i

Finally for many particles, we must translate all of them, and we have

I 5 N I
<$1,$2,...’P’\I]>:;(ZVJ')<£L’1,.I2,...“If>. (21)

Finally, let us convince ourselves that P is in fact the total linear momentum. We will
carry out the discussion for one particle in three dimensions. We again invoke experiment
and de Broglie’s ideas to say we can expand in plane waves of definite momentum, so

< EF|V >= / < Fp><pl¥ > &°p (22)

Here p' is really momentum, following the chain of logic that experiments like Davisson
Germer imply that p= hk. Let us use our results on P to write

. =
< Z|P|¥ >= —,V/<:f|ﬁ><ﬁ|\lf>d3ﬁ:/<:f|ﬁ>ﬁ<ﬁ|\ll>d3ﬁ (23)
i
Inserting a complete set of momentum eigenstates on the left hand side, we have
/<:E|]3|ﬁ><ﬁ|\11>d3ﬁ:/<:f|ﬁ>ﬁ<ﬁ|\lf>d3ﬁ (24)

which implies that
Plp>=plp >, (25)

so in fact P is the linear momentum after all.

Time Translation Time translation is one case where we do want to take the passive
viewpoint. That is, we simply want to let the system evolve in time,

W >— |U(t) >
As before, we want to preserve probability amplitudes, or

< O >=< O(t)|¥(t) >



What we are saying here is, if we have an undisturbed system, the amplitude to find
|® > in |¥ > at time ¢ must be the same as it is now. A unitary operator will guarantee
that property. If we have

U (t) > = U@ > (26)
() > = U@)|® >,

then
<O)|U(t) >=< UD|UVY >=< O|UU|¥ >=< O|U > .

We again use the general form
U(t) = exp(—%Ht) (27)
where H is a self-adjoint operator. This form will guarantee that U(t) — [ as t — 0, and
Uty +ta) = U(t1)U(t2).

Let us derive a differential equation by considering small times. For simplicity, we con-
sider a system with only one coordinate, x. We have

<z|¥(t+e) >=<z|U(e)|¥(t) >,

where |U(t) >= U(t)|¥ > . Expanding to O(e), we have

< x|U(t) > +€% <x|U(t) >+...=<z|¥(t) > —%6 < x|H|U(t) > .

Matching the coefficient of € on both sides, we have

0
z’ha < x|U(t) >=< z|H|V(t) > . (28)
The argument just given is very general. It is based solely on conservation of probability
amplitudes. No matter how complicated our system is, we can assert that

e,
@hahlf(t) >= H|U(t) > .

There is nothing in the above that requires that H be independent of time. Conservation
of probability amplitudes has nothing to do with conservation of energy, so H can have
explicit dependence on time. This would occur for example in a system acted upon by
an external, time-dependent field. NOTE When there is explicit time dependence in H,
Eq.(28) continues to hold, but Eq.(27) needs generalization. For now, we will assume no
external forces on our system, so we have a closed system. For this case, H will be an
operator with no explicit time dependence.



The line of argument just presented does not specify what H is, it merely says if we
are going to preserve probability amplitudes, a self-adjoint H must exist. Further, it does
not (yet) relate H to the physical quantity, energy. Here appeal to experiment must be
used. Einstein-Planck tell us that frequency is related to energy up to a factor of Planck’s
constant. From our equation, an eigenstate of H will produce a term in |¥(¢) > which
moves with a definite frequency, and we then can conclude that H must be an operator
whose eigenstates have definite energy. More explicitly, suppose we have an eigenstate
of H,

H|V >=E|V >,
with < U|¥ >= 1, and of course E is real since H is self-adjoint. Then U(t) acting on
this state gives

UtV >= exp(—%m)w >= exp(—%Et)Nf >,

so this state moves with a definite frequency hw = FE, and Einstein-Planck tell us that
FE is indeed the energy.

Finding H What is H? None of the above discussion actually tells us what to use
for the operator H. We generally have three routes to discovering H :

e A classical H exists, which is then “quantized.”

e Symmetry arguements can be used. For example Dirac discovered his famous equa-
tion by looking for a relativistically invariant equation that could handle spin 1/2.

e Experiment may reveal new degrees of freedom. For example the Stern-Gerlach
experiment revealed the existence of electron spin.

Let us review the first method. Suppose we have a classical particle moving in one
dimension under a potential V' (z). The Lagrangian is

_mda:

= 5(%)2 —V(z)

The generalized momentum is

. . dx
p=0L/0(&) =mi = m

and the classical Hamiltonian is

dx 1
H=p——L=—p° .
P 5P + V()

For the quantum Hamiltonian, we simply replace the classical momentum and coordinate
by the corresponding quantum operators, so as a quantum operator we have
1

H=-—P*+V(X)
5 b+ V(X)



Using the quantum form of H we have
1 1
<o|H|V >=< 2|—P?> + V(X)|¥ >=< | —P*¥ > + < 2|V (X)|¥ > .
2m 2m

Now < z|V(X) =V (x) < x|, so < z|V(X)|¥ >= V(x) < z|¥ > . Further,

h 0

< z|P|¥ >= —— < z|U >,
1 Ox

so we finally have

2
< 2| H|U >=< ﬂ%}ﬂ VX0 = (—;—m;—; V(@) < 2|0 >
so the time-dependent equation becomes
n o
zha < z|U(t) >= (_%W + V(x)) < z|V(t) >,

the familiar form of the time-dependent Schrodinger equation.

NOTE: This is an easy route to the Schrodinger equation. However, at the time
Schrodinger discovered his equation, the idea of conservation of probability amplitudes
had yet to be formulated.

Momentum Representation We have given the discussion in terms of the x—representation.
However, we can be in any representation. Let us explore using the momentum or wave-
number representation. Consider

< p|X|¥ >:/dp<p|X|:13><x|\lf>:/dp<p|x>x<x|\If>.

Now
L exp(—2pz)
ex —_—— .
\V2mh P hp

We can pull down a factor x with —(h/i)0/dp, so

<plz >=(<zlp>)" =

h o
<plX|¥ >=—=— <p|¥ >
i Op

As an example, take a harmonic oscillator. We have

PP 1 p? 1 0?
<plHIV >=< p|(=— + =mw’X?)|¥ >= (-— — —mw’h’ =) < p|¥ > .
We note that for the harmonic oscillator, the Hamiltonian looks quite similar in x and p
representations.



Examples of U(t) The easiest case we can study is a free particle in one dimension.
Here H = P?/2m so
i P?
Ut) = ———1
(1) = exp(—3 5—1)

To see what this really is more concretely, let us sandwich the identity to the right of
U(t). The identity is

Iz/dp|p >< pl,

and P|p >= p|p >, so we have

i p?
U(t) = /dplp > exp(—p5 1) <pl,
so U(t), like I is diagonal in a continuous index. This is still a bit abstract. We can make
it more concrete by taking a coordinate space matrix element, < x|U(t)|z’ > . This is an
amplitude not an actual probability amplitude, but an interesting quantity nevertheless.
To visualize it, imagine we have a particle at 2’ at ¢t = 0. We wait for a time ¢ and ask
what is the amplitude for it to be at 7 We are considering a free particle, but in general

the matrix element
< z|U(t)|z" >

is an example of Feynman’s propagator. Returning to the free particle, we can write

-2
< z|U(t)|z" >= /dp <zlp> exp(—i%t) < pla’ >

h2m
[ dp p(r — ') i p° )
= | g Pl eplg o ) < ple >,

where we used

1 (i pa:)
exp(i—
V2rh h
Evaluating the integral for < z|U(t)|z’ > is an exercise in Gaussian integration, which
we will come back to later.
The harmonic oscillator gives another example where we can see the structure of U (t).
We know from undergrad QM that for the harmonic oscillator, H has a purely discrete
spectrum. There are eigenstates |n >, satsifying

< zlp >=

PP 1 1
Hln >= (% + §mw2X2)]n >= hw(n + §)|n > .

The |n > are a complete set, so

]:Z|n><n,
n



and
i ‘ 1
U(t) = exp(—gHt)I = zn: In > exp(—iw(n + 5)) < n|

Both I and U(t) are diagonal matrices, now in a discrete index. We again may get to a
more concrete object by taking coordinate matrix elements. We have

1
< z|U(t)|2" >= Z < z|n > exp(—iw(n + 5)) < nl|z' >.

n

The < x|n > are just the familiar harmonic oscillator wave functions. Evaluating U(t)
does not look easy in this form, but turns out to be another exercise in Gaussian integrals.

The Case of Time-Dependent Hamiltonian If the time axis is uniform, we can
write

U, t)=U(t—-1t),

i.e. the U operator does not depend on where on the time axis the points t,¢" are, only
on the difference t —t'. However, there are certainly cases where this condition does not
hold. A concrete example is a system where the potential depends explicitly on time.
Suppose we have a classical system with classical Hamiltonian

Py .
H.=—+V(Z,t).
° 2m (71)
How do we describe this system quantum mechanically? What is the Schrodinger equa-
tion for this system? We will come back to this specific case, but for now we will give
a much more general discussion. Our basic requirement is unitarity. The state of the

system at time t is related to the state at time ¢’ by a unitary transformation,
|U(t) >=U(t, t")|U(t') > .
We require conservation of probability amplitudes,
< O)|V(t) >=< O(t)|W(t') > .
For this to hold for arbitrary states |¢ > and ¥ >, U must be unitary,
U, Ut t)=1. (29)

What this requirement means is that the system is preserved as time evolves. The energy,
linear momentum, angular momentum, etc all may change as time progresses, but the
system remains so many particles of such and such type. (Actually the unitarity condition
holds even when particles are created and destroyed. Some systems of that type will be
covered in Physics 581.) Let us differentiate Eq.(29) with respect to t. We have

a / / / a A
(aUT(t,t))U(t,t)+UT(t,t)aU(t,t) =0, (30)



or applying UT(¢,#') on the left,

0 0
(Ut ) =UN (L ONU( ) + =U(t, ) = 0. (31)
ot ot
Let us examine the operator multiplying U(¢,t’), and in particular, see what its adjoint

is. We have

0 0
Ut t)=U ) = U ) U (¢, Y). 32
(U() 2V 0)) = £ UG U1, 8) (32)
Using Eq.(29), we can rewrite Eq.(32) as
(U(t t’)gUT(t Nt = 2U(t U, 1) = Ut t’)gUT(t t) (33)
) at ) 8t Y ) Y 8t ) Y
So if we set 5 ‘
L) Ul (t,t) = —~ H(t 4
Ut U1 1) =~ H ), (34)
then HY(t) = H(t), and Eq.(31) becomes
. a / /
zhaU(t,t) =H@)U(t,t). (35)
Then if |U(t) >= U(t, t')|¥(t') >, we have
., 0
zhgmf(t) >= H(t)|V(t) >, (36)
or taking the matrix element with the bra < Z|, we have
L0 L
zha < Z|U(t) >=< T H(t)|¥(t) > . (37)
Then if our quantum Hamiltonian is
1 -~ -
H=_—P-P X,
BB V(X,), (38)

we have

0 h?

zha < ZU(t) >=< Z|H(t)|¥(t) >= (—2—V + V(7, t)) < Z|V(t) > (39)
m

Note We see that the Schrodinger equation really comes from unitarity, or conservation of

probability amplitudes. The system may or may not conserve energy, linear momentum,

or angular momentum, or any other quantum numbers. Even if none of these is conserved,

there is still a Schrodinger equation describing the time evolution of the system.
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Equations of Motion for Expected Values Consider an operator O which does not
depend on time. The expected value of O is then

<O > (t) =< V(t)|O|¥(t) > . (40)

Setting t' = 0 as is usually done, we have

<O0>(t) =<7 exp(%Ht)Oexp(—%Ht)Nf > (41)
Taking the partial derivative with respect to t, we have
P »
5 <0> ()= % < U()|[0, H|[¥(t) > . (42)

Let us apply Eq.(42) to components of X and P. We will need to evaluate the commu-
tators,
[Xla HL and [-PZ7H]7

where [ labels a particular component. We have

1 = o il
X,Hl = —|X;,P-P|=—PF 43
[ Iy } Qm[ I ] m I ( )
where we used [X,,, P,| = ih6,,. Similarly, the same commutator is used to show that
L. k8 .
P,H| =[P, V(X)| = -=V(X). bl
[P H] = [PLVE)] = S5 VD) (44)

Exercise 1 Derive Eq.(44) when

o0

V(X)=) a, X",

n=0

where a,, are constants. Use only the commutator [X, P] = ih.

Using these equations we have

0 1 0 0 >
§<Xl>(t)_E<PZ>’E<Pl><t)__<a_le(X)>’ (45)

By inserting the identity as [ = [ d*z|Z >< Z|, we may also write

0 = 0
—< —V(X)>=— [ Pz <V®)|F > —V(T) < T|V(t) >
V) == [ < vl > JLv@ < av)

Eqgs.(45) are just the classical equations of motion applied to expected values. (Since
the expected values depend only on time, the partial derivatives with respect to time
are the same as ordinary derivatives.) Further, the above derivation extends to the case
where the potential is time dependent, so the quantum equations for expected values

agree with the corresponding classical equations for that case as well.
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Rotations As our last example of Dirac’s transformation theory, we consider rotations.
Our system will be one particle in three dimensions, but the method is completely general.
Imagine we have a state |¥ > and we want to perform a rigid rotation around the 3-axis
by angle ¢, to give a rotated state |¥' > . The rotated vector Z will be denoted by R(¢)Z,
and is given by

cos(¢) —sin(¢) 0 x x cos(¢) — ysin(¢)
sin(¢)  cos(¢) 0 y | = ycos(®) +xsin(p)
0 0 1 z z

As in previous cases, we will generate ¥’ > by a unitary transformation,
V' >=U(p)|¥ >

where

U(6) = exp(—%Jg)

where J3 as a self-adjoint operator. Based upon purely classical or common sense rea-
soning, we have

< RV >=< Z|U($)|¥ > . (46)

Note the presence of R~! on the left hand side. To see that this equation is correct,
imagine that |¥ > corresponds to a “lump” on the r—axis. Rotating it by angle ¢
around the 3 or z—axis, we it will now be a lump at centered about a point in the first
quadrant. If we evaluate < Z|W¥’' > at a point & right in the middle of the rotated state,
this will give the same value on |¥ > if we are at R™'Z. (Draw a picture to see this
clearly.)

Writing out Eq.(46) we have

< xcosg+ysing,ycosp —xsing, 2|V >=< z,y, 2z, |U(4) |V > .
Taking ¢ — 0 and expanding we have
< $+y¢7y - {E¢7Z|\I’ >~< [E,y,Z|\I’ > +¢(y8$ - xay) < {E,y72|\11 >,

and ,
< x,y, 2|U(9) |V >~< z,y, 2|V > —%gb < x,y, 2|5V > .

Matching coefficients of ¢ we have
h h
< x,y,z| S5V >= (x;ay — y;ay) <,y 2|V >=<x,y,2|(XP, —YP,)|¥V >
This shows that as an operator J3 or J, is given by

Js=J,=(XP,—-YP,),

12



and pulls out as the usual differential operator. NOTE: We have used J; here rather
than L3 to emphasize that this arguement regarding rotations as preserving probability
amplitudes will always involve the total angular momentum of the system. In the
particular case we discussed the only form of angular momentum is the orbital angular
momentum, so we could have used L3 here.

We will delay a discussion of spin, but we can handle the case of n particles. If we
have a system of n particles, we can write

<R'E, .. R0 >=<1,...73,|U($)|V >,

that is, we must rotate all the particle coordinates. Expanding around ¢ = 0 again, we

obtain
n

> (wpy — ype)i < Tr, . T U > =< Ey, L E| ST >,
i=1
and we can again write J3 as an operator as

n

J3=>» (XP,~YP,),
r=1
which says that the total 3 or z component of the orbital angular momentum is the sum
of the individual angular momenta for each particle in the system.
The generalization of the above for rotations around 1 and 2 axes is straightforward.
For our n particle system we would obtain

n

Jl = Z €jkl<Xij)r-

r=1
(In this equation, j,k,l are Cartesian indices, while r = 1,2,... n labels particles. )

The commutation rules can be obtained by using the X and P commutation rules or by
working to second order in small angles. They can be written

[Jj, Jk] = ithlil.

Suppose we define a total coordinate and total momentum operator as

n n

Xi=> (X)), Pi=> (P),

r=1 r=1
Then it is easy to show by using the commutation rules, that
[Jj, Xk] = ZTLEjlel, [Jj, Pk] = ihﬁjklf)l.

What we are seeing here is the concept of vector operator. Suppose we have any
3-vector operator V. Then the commutation rules of V with .J are

[Jj, Vk] = ithkl%.

The origin of these commutation rules is the ultimately the fact that 3-vectors transform
in a known way under rotations. The notion of vector operator plays an important role
in advanced angular momentum theory.
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