
1 Imaginary Time Path Integral

For the so-called imaginary time path integral, the object of interest is

exp(−τH

h̄
)

There are two reasons for using imaginary time path integrals. One is that the appli-
cation might be statistical mechanics. There one interprets τ usually denoted as β as
proportional to the inverse temperature of the system (kT = h̄/τ). To obtain the parti-
tion function, it is necessary to set the final variables (coordinates) equal to the initial,
and integrate over them. This takes the trace. So for a system of one particle in one
dimension, we would write

Z =
∫
dx < x| exp(−τH

h̄
|x > .

The second reason for using imaginary time path integrals is to obtain information about
the ground state of a quantum system. The idea is to take large values of τ. To see what
this does consider

< x| exp(−τH

h̄
)|x′ >

Sandwich the identity in terms of energy eigenstates (assume for simplicity they are all
bound states)

I =
∑
n

|n >< n|

We obtain ∑
n

< x|n > exp(−τEn

h̄
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=< x|0 > exp(−τE0
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) < 0|x′ > + < x|1 > exp(−τE1
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) < 1|x′ > + . . .

As τ increases more and more, the lowest energy state dominates more and more, so for
large enough τ, information about the ground state is obtained.

Deriving the Path Integral The procedure for deriving the path integral expression
is identical to what was done for the real time case. We split our interval τ up into N
small intervals of length ϵ, with τ = Nϵ. For a large enough number of intervals or small
enough ϵ, we can get a simple approximation to
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Writing the expression exactly first, we have
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∫ ∞

−∞
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This is simply an identity. The purpose of doing it is that for small ϵ, the individual
factors become simple. Consider

< xk| exp(−
ϵH

h̄
|xk−1 > .

For a Hamiltonian of the form

H =
PP

2m
+ V (X),

we may split the kinetic energy and potential energy in the exponent making only an
error of O(ϵ2) in the exponent. We have
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Note that both terms have real quantities in the exponent. Let us concentrate on the first
factor. This is just the imaginary time free propagator. We can determine it by inserting
a complete set of momentum eigenstates and doing a Gaussian integral. However, there
is a simpler way. Suppose we have
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where E is a real energy. We may convert this to

exp(−τE

h̄
)

by making the replacement t → −iτ, where τ is a real, positive number. Let us do this
on our previous formula for the free propagator. We had

< x| exp(−iP 2(t− t′)
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Taking t− t′ to −i(τ − τ ′), we obtain
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Returning to Eq.(1) we now have
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Putting all the terms together, we finally have
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where the limit N → ∞ is assumed. More symbolically, we may write the result as
follows

< x| exp(−τH
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∫
D(x(τ1)) exp(−

S̃

h̄
)

where
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∫ τ
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)
This expression has some similarities as well as some crucial differences compared to the
real time path integral. Here just as in the real time case, the integral is over all paths
connecting the initial point x′ to the final point x. The quantity S̃ has the dimensions of
action and is the integral of a Lagrangian-like quantity. The differences are (i) that the
quantity in the exponent is real, and (ii) in the Lagrangian-like quantity whose integral
gives S̃ the kinetic energy term and potential energy term have the same sign, unlike the
real time Lagrangian. Defining

L̃ =
m

2
(
dx

dτ
)2) + V (x(τ)),

we may write

S̃(x, τ ; x′, τ ′) =
∫ τ

τ ′
dτ1L̃(x(τ1))

Example of the Harmonic Oscillator Here we want

< xa| exp(−
Hτ

h̄
)|xb >,

where τ = τa − τb. Using the t → −iτ prescription, we may obtain the result from the
real time expression for the harmonic oscillator. We have
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where
S̃ =
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2 sinhωτ
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)
Let us now take the large τ limit, using

coshωτ =
1

2
exp(ωτ)(1 + exp(−2ωτ) → 1

2
exp(ωτ),



and corresponding expressions for sinhωτ. Keeping only the biggest terms,
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We finally have
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But the right hand side of this expression is just

exp(−τE0

h̄
) < xa|0 >< 0|xb >

for the harmonic oscillator. Again, we note that we can obtain the ground state energy
and wave function by doing a purely classical calculation, then going to imaginary time.
The terms in excited states can be obtained as well by retaining the terms O(exp(−2ωτ))
in sinh(ωτ) and coshωτ.

Possibility of Stationary S̃ In the semiclassical approximation for the real time
path integral, the answer is dominated by the action for a classical path (one satisfying
F = ma) which goes from initial to final points. It is worth asking if and when stationary
values of S̃ occur. The answer is that they do occur when there is tunneling present.
Penetration of a particle through a potential barrier is on the one hand a purely quan-
tum phenomenon, but on the other hand can be treated using the imaginary time path
integral. A typical example is for a so-called two well potential, for example

V (x) = λ(x2 − x2
0)

2 (2)

This potential has minima at x = ±x0, and the minima are separated by a barrier of
height λx4

0. A stationary value for S̃ requires that the equation

m
d2x

dτ 2
=

∂V (x)

∂x
(3)

be satisfied. (Note the different sign of the right hand side vs the real time equations.)

Exercise 1 For the potential in Eq.(2) show that there must exist a solution of Eq.(3).
This can be done using conservation of ’energy’. Computing the value of S̃ for this
solution can also be done in a surprisingly elementary way. Draw a picture involving
the potential appropriate for Eq.(3) to get insight. (Not part of the exercise-To continue
on and get the splitting between the ‘even parity’ and ‘odd parity’ levels in this potential,
multiple tunnelings must be considered.)



The Partition Function Given our expression for the imaginary time propagator
for the harmonic oscillator, we may get the partition function by setting xa = xb and
integrating. We have

Z =

√
mω

2πh̄ sinhωτ

∫
dxa exp(−
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2h̄ sinhωτ
2x2

a(coshωτ − 1))

=

√
1

2(coshωτ − 1)
=

1

2 sinhωτ/2
=

e−ωτ/2

1− e−ωτ

= e−ωτ/2 + e−3ωτ/2 + e−5ωτ/2 + . . .

which is the correct result. Physically this is the partition function for a harmonic
oscillator surrounded by a heat bath.

Use of Imaginary Time Path Integrals Imaginary time path integrals are prac-
tically useful in problems in condensed matter physics and particle physics. Numerical
techniques involving random numbers (so-called Monte Carlo methods) are available for
evaluating high dimensional real integrals. A typical system might be a quantum liquid,
such as He4, or the electron ’gas’. The system is typically uniform and composed of like
particles, numbering a few hundred. An example where imaginary time path integrals
would not be appropriate would be a sytem of complicated, non-symmetric molecules.
This could only be handled if the molecules were modeled in some way. Building the
molecules from scratch and then having them interact involves too many energy scales
to allow practical use of imaginary time path integrals. However for uniform systems of
identical particles, imaginary time path integrals have become the dominant method.


