
1 Propagator and Path Integral

In general the quantity called the propagator is a matrix element of U(t), and is often
denoted by the letter K, so for a one particle system in one dimension, we would write

K(x, x′, t) =< x| exp(− i

h̄
Ht)|x′ >

The first case to look at is a free particle,with Hamiltonian

H =
P 2

2m

For this case we add a subscript f to denote that we are discussing a free particle, so
here

Kf (x, x
′, t) =

∫
dp < x| exp(− i

h̄
Ht)|p < p|x′ >

=
∫ dp

2πh̄
exp(

i

h̄
p(x− x′) exp(− i

h̄

p2t

2m
),

where we sandwiched the identity inside the matrix element. This is a Gaussian integral,
which can be put in a standard form by re-arranging the quantity in the exponent. This
move is called “completing the square.” We have for the exponent,

−i[
t

2mh̄
[(p− m(x− x′)

t
)2 − (

m(x− x′)

t
)2]].

We define a new variable of integration

p′ = p−m
(x− x′)

t
,

and integrate over p′. A standard Gaussian integral is

∫ +∞

−∞
exp(−iα

x2

2
)dx =

√
2π

iα
.

Using this, we have an explicit formula for the propagator for a free particle,

Kf (x, x
′, t) =

√
m

2πih̄t
exp(

i

h̄

m(x− x′)2

2t
)

The quantity in the exponent is a purely classical quantity once the factor of i/h̄ is
extracted. It has the same dimensions as h̄, i.e. action, and in fact is the classical action
for a free particle to go from x′ to x in time t.

Sc(x, x
′, t) =

m(x− x′)2

2t



Classically the particle simply travels in a straight line, starting from x′ and ending at x.

x(t′) = x′ + vt′.

Putting t′ = t, we have
x(t) = x = x′ + vt.

The velocity is constant, and its magnitude is determined by the endpoint coordinates,

v = (
x− x′

t
)

For a free particle, the Lagrangian is

L =
m

2
(
dx

dt
)2

The action is defined as the integral of the Lagrangian over time. The action can be
computed for any “path” or function x(t′). The classical action, denoted as Sc is the
action evalutated for the actual classical trajectory or path connecting x′ and x. For our
case, we have

Sc(x, x
′, t) =

∫
dt′L(x(t′)) =

∫
dt′

m

2
(
dx

dt′
)2 =

m(x− x′)2

2t

The propagator itself has no physical state in either its bra or ket slot. When folded
into a physical state, the propagator does what its name implies, namely moves a state
in time. For some initial state |Ψ >, the propagator will give the state at time t;

< x|Ψ(t) >=
∫
dx′ < x| exp(− i

h̄
Ht)|x′ >< x′|Ψ >=

∫
dx′K(x, x′, t) < x′|Ψ >

Path Integral Let us now turn to a case of a particle interacting with a potential. We
remain in one dimension, since all the ideas to be presented have an easy generalization
to higher dimensions. Suppose the Hamiltonian of our system is

H =
P 2

2m
+ V (X)

We are interested in computing

K(x, x′, t) =< x| exp(− i

h̄
Ht)|x′ >

just as before. This is not directly computable for a general potential, so we start splitting
the time interval up. So for one split, we have

< x| exp(− i

h̄
Ht)|x′ >=< x| exp(− i

h̄
Ht1) exp(−

i

h̄
Ht2)|x′ >



where t = t1 + t2. This is not obviously helpful. However, we go on and make more
splits. The physical idea of path integral is that as we split up the time into smaller and
smaller slices, the matrix elements become very simple. So let us insert a whole sequence
of times, equally spaced by a small amount ϵ, where the number of intervals is given by
t = Nϵ. Writing K for this case, we have

K(x, x′, t) =< x| e−
iϵH
h̄ e−

iϵH
h̄ . . . e−

iϵH
h̄︸ ︷︷ ︸

N factors

|x′ >

It is still not obvious why this is useful. But let us continue. Since we are in coordinate
space, it makes sense to insert the identity in terms of coordinates between each of the
factors. This leads us to

K(x, x′, t) =
∫

dx1 . . . dxN−1 < x|e−
iϵH
h̄ |xN−1 >< xN−1|e−

iϵH
h̄ |xN−2 > . . . < x1|e−

iϵH
h̄ |x′ >

The point of the path integral approach is that as ϵ → 0, the matrix elements become
very simple. While in general it is wrong to split operators apart in the exponent, since
both the kinetic energy and potential are multiplied by the small parameter ϵ, it is valid
here to O(ϵ)2. In general with operators we can write

exp(A) exp(B) = exp(C),

but the formula for C is not just A + B. The fact that C exists is called the Baker-
Haussdorf theorem. The only part of it that we need right now is the fact that

C = A+B +
1

2
[A,B] + . . . ,

where the additional terms involve multiple commutators, such as [A, [A,B]], etc. If
both operators have a factor of ϵ, the terms involving commutators are O(ϵ)2 and can be
dropped. We then have

< xk|e−
iϵH
h̄ |xk−1 >≈< xk|e−

iϵP2

h̄2m |xk−1 >< xk|e−
iϵV (X)

h̄ |xk−1 >

The first factor is a free propagator, the the second factor can be evaluated by replacing
the operator X, but either xk−1 or xk. For small ϵ the difference between these two choices
is again of O(ϵ)2. We will write our formulas for X replaced by xk−1. We finally have
then

< xk|e−
iϵH
h̄ |xk−1 >→

√
m

2πih̄ϵ
exp

(
i

h̄
(
m(xk − xk−1)

2

2ϵ
− ϵV (xk))

)
Adding up the exponents for each interval, the net exponenent is

N∑
k=1

(
m(xk − xk−1)

2

2ϵ
− ϵV (xk)

)
≈
∫ t

0
L(x(t′))dt′,



where on the right side of the equation, we identify the total exponent as the time
integral of the Lagrangian. This integral is the action, so in the path integral approach,
every path between the endpoints is considered, and each path is weighted by its action.
Symbolically, the path integral for the propagator is usually written as

K(x, x′, t) =< x| exp(− i

h̄
Ht)|x′ >=

∫
exp(

i

h̄
Sc(x(t))D(x(t))

where the measure of integration is well defined once the time interval is broken into
small pieces. In that case we have

D(x(t′)) = (

√
m

2πih̄ϵ
)Ndx1 . . . dxN−1


