Scattering in the Interaction Representation

Scattering can be described either using the integral equation form of the Schrédinger
equation, or as a time dependent process using the interaction picture. In this section,
we discuss the interaction picture treatment in first order. The formulae are quite similar
ind=1,2, or 3, so all three cases will be carried along. The Hamiltonian for the system
is L

p=tr, V(X),
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where the potential is assumed to fall off rapidly at infinite distances. (The Coulomb
potential in d = 3 is a borderline case.) The physical quantities describing scattering can
be extracted from the matrix elements of Uy, calculated over an infinite time interval.

Basic Setup The matrix element takes the general form
< flUr(00, —00)|i >= (My;) 2md(ws — w;),

where the final energy is Fy = hwy, and the initial energy is F; = hw;. The delta function
for conservation of energy will be present in any order of perturbation theory, and is
present in the exact matrix element of U;. It is at first sight disconcerting to see a delta
function in a matrix element of U;. However, the matrix element being considered is
between plane wave states of definite wave-vector, so this matrix element is not (yet)
a probability amplitude. To obtain a probability amplitude, we must have physical,
normalized states, both initial and final. Writing this in more detail, a true probability
amplitude would be

< & |U; (00, —00)|®; >= /d/;’fd/; < ®|k; >< Es|Ur(00, —00)|k; >< ki|®; >

This formula gives the probability amplitude for a transition from |®; > at very early time
to a state |®; > at very late time. The delta function in the definite wave vector matrix
element of U; will be integrated over and the result is a finite probability amplitude.
This approach is fundamental, but rather tedious to work with in practice. In its place a
simple method which gives the same results for physical quantities is used. There are two
main features to this approach. First, plane waves are still used instead of the physically
correct wave packets, but the plane waves are made into normalizable states by imbedding
the system in a large rectangular box with periodic boundary conditions. While this does
make initial and final states normalizable, they are still spread throughout the system,
unlike a true initial and final states which are free well before the collision and well after.
This is mimicked by turning off the interaction before a large negative time —7'/2, and
after a large positive time 7'/2. We then have for the matrix element of Uy,
2sin(wy,;1/2)

< kf|Ur(o0, —00)|k; >= (My,) T



where wy; = wy — w; = (Ef — E;)/h. Defining

2 si T/2
I(w,1) = 22T,

w
as a function of w, I(w,T) has a peak value of T" at w = 0, and has its first zero at

w =27 /T. For any T, the integral of I(w,T) from w = —o0 to +o0o is 27, and
I(w,T) = 21(w), as T — oo

Thus for large but finite 7,1 (w, T') is a function with a sharp spike at w = 0, which is the
condition of energy conservation. What constitutes “large T” depends on the frequencies
in the problem. As a typical example, light in the optical range of wavelengths has
w ~ 101°Hz. Thus a time as short as T ~ 1ns is in fact a very large value of T.

By putting the system in a box with periodic boundary conditions and restricting the
interaction time to 7', the matrix elements of U;, which are probability amplitudes, are
finite and well-behaved. Turning to probabilities themselves, we take the absolute square
of the matrix elements of Uy, and sum over whatever final states are “of interest”, this
meaning what range of final momenta will be detected in the experiment. At this point
we have

P = Z |Mf’i|2(I(M,T))2, W = Wf — W
f

where P is the probability, and the sum on final states f is restricted in a way appropriate
to the experiment being performed. Now the function (I(w,T))? like I(w, T) itself, has a
very sharp spike at w = 0, but the height of the peak is 7% instead of 7. Mathematically,
it is true that

I(w,T)* — 21T6(w) T — oo

For T large in the sense described above, the peak in I(w,T)? is so sharp that negligible
error is cause by replacing (w,T)? by 2rT§(w). But this implies that P grows linearly
with T', so a quantity independent of T is obtained by dividing P by 7. This is called
the transition rate and has dimensions of frequency, i.e. it is a measure of the number
of transitions/second. The formula for the rate is then

R =Y |Myil2md(wy — wy).
!

In an actual scattering situation, the rate is not yet the quantity of interest, since it
is proportional to the number of particles which are incident. This is taken care of by
dividing the rate by the incident current,

R
Jinc

g =

It is worthwhile to note the dimensions of ¢ for d = 1,2,3. This is determined by the
dimension of the current, since the rate always has dimensions of frequency. In the most



familiar case of d = 3, the current has dimensions 1/area - time, while in d = 2 it has
dimensions 1/length - time and in d = 1 it has dimensions 1/time. Thus in d = 3, the
dimension of ¢ is area (crossection), in d = 2 it is length and in d = 1, o is dimensionless.

The quantity o depends on what final states are involved in the 37, . For example in
d = 3, all energies may be accepted but the direction of the scattered particle may not
be summed over. This would mean that outgoing particles are detected in individual
small elements of solid angle. In this case one would have do/dS2, where dS) refers to
the element of solid angle. Summing over all directions of the scattered particle is done
by integrating do/dS) over solid angle, and gives the quantity known as the total cross
section. Likewise in d = 2, if the angle of scattering is not summed, we would have
do /d¢ where ¢ is the angle of scattering. Finally in d = 1, one may differentiate between
particles which are transmitted in the same direction of the incident particle, or reflected

by Jforward7 Or Opackward-

First Order Calculation Let us now turn to the first order calculation in detail. The
box normalized wave functions are

— ]_ —
< Tk >= —= exp(ik - ),

VvV

where the meaning of the “volume” V in the various dimensions is

V=1L L,L, L,L,L.
d=1 d=2 d=3 -

The periodic boundary conditions mean that every component of wave vector is discrete,

21N,
k, = ,etc.
I etc
Our first order calculation involves
—i 2
o =20 [ Vi,
h N
where . )
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Vi = exp(——=)Vs exp(——).
The matrix element of V7 is then
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Going over to an infinite time interval we have for the matrix element of Uy,
. . - o .
< kUM (00, —00) |k >= — < ky|Vslk; > 2m0(wy — wi),
so the rate becomes

R=Y \%Z < Kf|Vslk; > 2276 (w; — w;).
kg
In detail, the matrix element of Vy is
< FylVslF, 5= —= ([ exp(=ify- D)Vs(@) explif - 7)) -
P >= —= exp(—tks x r)exp(tk; - T)) —=
svs VY \J ST TS P N

To express this result in terms of Fourier transforms, recall the definitions

1@) = [ Gy ol - 2)7(E)

and

fk) = [ dexp(ik - )1(7)

We see that the matrix element of Vg can be expressed in terms of the Fourier transform

Of Vs, . . . .
< k‘f|V5|kZ >= Vs(l{?f — kz)

Sum on Final States Now we turn to the sum on final states. At present, we have
a sum over the discrete wave vectors in our periodic box. However, when the size of the
box goes to infinity, the sum will go over to an integral times a characteristic factor. To
see what the factor is, we first write out the forms for the wave vectors for the case of

d = 3. We have 5 5 5
™ ™ ™
km = - ) ky, = ! ) kz = -
L, Y L, L,
so the spacing between success values of the wave vector components is
27 27 27’
Ak, = —, Ak, =—, Ak, = —
L, YL L,

so (L,/2m)Ak, =1, etc for k,, and k,. Rewriting the sum on discrete wave vectors and
using the (Riemann) definition of integral, we have that a sum over wave vectors becomes

for d = 3,
Lalyle S vy Ak, Ak, AR, — @)}yﬁ/d/?f(l?),
™
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where we have basically inserted “1” in the sum on final wave vectors. Applying this to
our rate, we have

v L

L1 -
R = (%)S/dmﬁvs(kf—ki)ﬁ

12218 (ws — w;)

We see that the factors of V associated with the final particle cancel. Those associated
with the initial particle will also cancel when we divide by the current. We will perform
that step after treating the energy conservation delta function.

Energy Conservation Delta Function Let us first define the w's. We have

1 (hks)? h

ooy
T h 2m 2m &

2m™’

wr

Using these definitions, we can rewrite the delta function as

2m
Now in all cases, we will integrate over the magnitude of the final wave vector. The
factors from the integration weight vary as the dimension of our problem changes. For

one dimensional scattering, we have

Qﬂ) dks
h 7 2k;

dk:fé(wf—w,-) = ( (5(k’f—l€2)+(5<k’f—|‘k’l))

In this one dimensional case, if final states are accepted from ky = —oo to 0, only the
reflected scattering is included, while if final states are accepted from ky = 0 to +o0, only
transmitted scattering is included, and of course both can be included by integrating —oo
to +o00. For two dimensional scattering, we have

2m . d

k2
kpdkpo(wy —wi) = (?)Tfé(kfc - kiz)

and finally for three dimensions, we obtain

om.  dk?
kidkpo(wy — wi) = (7)@71”5(/{]% — k?)
In all cases, after the integration over the magnitude of k is completed, we have kf = k;,
and there is a net factor involving k; which can be written as

m

Nd—1
hk; (ki)™

Note that the ratio m/hk; is just the velocity of the incident particle.



Incident Current and Final Results Finally, we note that the incident current is

h
Jine = — [V O, ¥ — (0, 0¥
L wow - .0
_ Wkl 1
om YV

(The incident direction is usually taken to be the z-direction.) Dividing by the current
will remove the volume factors associated with the incident particle.
We can now summarize the results in d = 1,2, 3. For d = 1 we have

9, M

1 -
Ufm‘wa’rd = ’ﬁVS(ON (hk)2

m

1~
Obackward = |hVS( 2k>| (hkf)Q

For d = 2 we have

do 1
Ao o !th( — kyp)l? k(hkl)
Finally in d = 3 we have
dJ 1 m ~ = N
— = ke —k k2 —)? ke — k¢)|? 1

The 27 factors in these formulas comes from the 27 which accompanies the energy
conservation delta function, and the 1/(27)? that comes into the sum on final states. It is
easily checked that the various scattering quantities have dimensions (length)?~!. These
results are of course for first order scattering, known as the Born Approximation. This
is a good approximation for high energy scattering, where the kinetic energies are large
compared to the potential. Calculations in the Born Approximation are very easy-all
that is needed is the Fourier transform of Vg.

0.1 Yukawa Potential in Three Dimensions

A potential of the form

A
Vs = —exp(—ar)
r

a so-called Yukawa potential, is an important case. Note that for a = 0, we obtain a
Coulombic potential. Let us calculate Vs(q), which is given by

Vs(q) = / &Er exp(iq- 7)Vs(r)

Let us choose our coordinate system so that ¢ is aligned along the z axis. This makes it
easy to do the angle integrations. We have

exp(iq - 7) = exp(iqz) = exp(igr cosf).



The angular part of our integral is then
/ sin 0dfd¢ exp(igr cos 0)

The ¢ integration gives a factor of 27, and we have

) :
27r/ d(cos ) exp(igrcos ) = 4w qu(fr)
-1

Returning to Vs(g), we now have

cj’) / 47rsm qr))i\exp(—oz) 47T)\/ dr sin(gr) exp(—ar)

The radial integral is easy to do. We have

1.1 1 . g

/ dT*(eXp(lqr) — exp(—igr)) exp(—ar) = 2z[a—zq a+ig a4+ ¢

We finally have
4\

a? + q¢?

Vs(q) =

Making use of Eq.(1) we have

do™  2m., N
w; W ey

To see what sort of angular distribution this implies, we recall that
= (ky — ki) - (ky — ki)

Now by energy conservation, |Ef| = |EZ| =k

9
@)

q* = 2k*(1 — cos )

where the angle 6 is the angle of scattering, i.e. the angle between Ef and k;. Using the
formula

2(1 — cosf) = sin?(0/2),

we finally have

do  2m., A2

dQy R (a4 k2sin?(6/2))2
This formula is the Born approximation for a Yukawa potential. If o = 0, it reduces
to a Coulombic potential. The Coulombic case is of course equivalent to Rutherford
Scattering. A huge amount of information on Rutherford scattering is available on the

web-just Google “Rutherford Scattering”.




The Born approximation is valid the potential is weak compared to the kinetic en-
ergy of the particle. The energy of the incident particle (and the scattered particle) is
(hk)?/2m. To make a rough estimate, let is evaluate the potential at r ~ «. Then our
criterion is approximately ,

Ao << @,
2m
so the Born approximation is clearly a good one at high energy.
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