
1 Semiclassical Approximation

The semiclassical approximation is a powerful approach to evaluating the propagator
under the right conditions. Roughly speaking, we want a smooth potential and short
de Broglie wavelengths. In the semiclassical approximation, the propagator takes the
following form,

Ksc(x, x
′, t) = F exp(

i

h̄
Sc(x, x

′, t)), (1)

where Sc is a strictly classical quantity, the action evaluated along the classical path
from x to x′. The pre-factor F is an approximation to the path integral for paths other
than the classical path. When the semiclassical approximation is working, most of the
important physics is in Sc, not F. The semiclassical approximation is exact, that is not an
approximation, for the free particle and the harmonic oscillator, among other examples.
It is important to realize that the semiclassical approximation has to do with how close
F is to the path integral around the classical path. Any path integral can be written
in the form of Eq.(1). The semi-classical approximation then is an approximation to F .
The general formula for F in semiclassical approximation is given at the end of these
notes.

Classical Path and Classical Action Consider any path x(t′) which starts at x′ and
ends at x. This means x(0) = x′, and x(t) = x. Once we have a path, we can calculate
the action for that path. This is just

S =
∫ t

0
L(x(t′))dt′.

The action certainly depends on the path used to calculate it. Now suppose we go to a
nearby path,

x(t′) → x(t′) + δ(t′)

where δ(t′) is small and vanishes at the endponts, δ(0) = δ(t) = 0. In other words, we
are considering only paths which start and end at our two points. It is of interest to see
how the action varies to O(δ). Putting x(t′) → x(t′) + δ(t′) into the Lagrangian, we have

L → m

2

(
d

dt
(x+ δ)

)2

− V (x+ δ)

Expanding, we have

L =
m

2
(
dx

dt
)2 +m

dx

dt

dδ

dt
− V (x)− δ

∂

∂x
V + . . .

Putting these terms in the action, we have for δS,

δS =
∫ t

0
dt′(

dx

dt

dδ

dt
− δ

∂

∂x
V )



Integrating by parts, we have

δS = m
dx

dt
δ

]t
0

−
∫ t

0
dt′δ(t′)(m

d2x

dt2
+

∂V

∂x
)

The boundary term vanishes since δ(0) = δ(t) = 0. The coefficient of δ in the integral
term is just the equation of motion, so if the equations of motion are satisfied, δS = 0,
for any δ(t′). Hence, we have the important result that:

The action is stationary against small changes in the path when the equa-
tions of motion are satisfied. Hamilton’s Principle

Method of Stationary Phase To see why it is important to be near a stationary
action in the path integral, consider an ordinary integral, not a path integral. Suppose
we want to calculate

I ≡
∫
dx exp(iλf(x)),

where λ is a very large parameter. The integrand is highly oscillatory and will be domi-
nated by points of stationary phase. A stationary phase point is when df/dx = 0. Suppose
xc is such a point, and we set x = xc + x′. Our integral becomes

I = exp(iλf(xc)
∫
dx′ exp(iλf ′′(xc)

x′2

2
+ . . .)

The integral is then of the form

I = F exp(iλf(xc)),

where F is the result of the integral on x′. When the method is working, this integrand
can be gotten to a good approximation by keeping only the O(x′2) term in the exponent,
which then becomes a standard Gaussian integral and is represented by the factor F.

The semiclassical approximation to the path integral is in the spirit of the method of
stationary phase for ordinary integrals. The point xc becomes the classical path xc(t

′).
The role of the large parameter is played by 1/h̄. We are near the classical limit, so h̄
is small (compared to any other quantity with dimension of action.) The factor F in
Eq.(1) is supposed to account for the contributions of paths around the classical path,
just as in the case of an ordinary integral, F accounts for the integral around the point
of stationary phase.

For certain problems, the semiclassical approximation is not in fact an approximation.
Examples are: the free particle, the harmonic oscillator, a particle in a constant field,
etc.

Harmonic Oscillator The Lagrangian for a a simple harmonic oscillator is

L =
m

2
(
dx

dt
)2 − m

2
ω2x2



We will denote final and initial points as xa and xb instead of x and x′. To find the
classical action Sc(xa, xb, t), we need to find the classical trajectory satisfying xc(t) = xa,
and xc(0) = xb. We know the motion is sinusoidal, and it is easy to show that

xc(t
′) =

xa sin(ωt
′) + xb sin(ω(t− t′))

sin(ωt)

Note that t is the fixed time at the endpoint, while t′ is the variable time along the path.
Knowing xc(t

′), we then can calculate Sc. We have

Sc(xa, xb, t) =
∫ t

0
L(xc(t

′))dt′ =
mω[(x2

a + x2
b) cos(ωt)− 2xaxb]

2 sin(ωt)
,

where the elementary integration has been omitted. The quantity Sc(xa, xb, t) goes up
in the exponent. The prefactor F is a simple generalization of the factor used for a free
particle. We have √

m

2πih̄t︸ ︷︷ ︸
free

−→
√

mω

2πih̄ sin(ωt)︸ ︷︷ ︸
harmonic oscillator

Semiclassical Approximation and Schrödinger Equation The exact propagator
is supposed to satisfy the Schrödinger equation,

ih̄∂tK(xa, xb, t) = < xa|H exp(− iHt

h̄
)|xb >

= (− h̄2

2m
∂2
a + V (xa)) < xa| exp(−

iHt

h̄
)|xb >

= (− h̄2

2m
∂2
a + V (xa))K(xa, xb, t)

Let us see how the Schrödinger might work out for a semiclassical approximation to
K. We write

Ksc(xa, xb, t) = F (t) exp(
iSc(xa, xb, t)

h̄
),

where we are not restricting ourselves to the harmonic oscillator at the moment. Acting
on K with ih̄∂t, we have

ih̄∂tK = (−∂Sc

∂t
+

ih̄

F

∂F

∂t
)K

We note that there is a purely classical term (∂tSc) with no factors of h̄ in it, and another
term which is O(h̄). The semiclassical approximation classifies terms by their order in h̄.
Looking at the right side of the Schrödinger equation, let us start with one derivative.
We have

h̄

i

∂K

∂xa

=
∂Sc

∂xa

K



Continuing to get the full right side of the Schrödinger equation, we have

(
1

2m
(
∂Sc

∂xa

)2 + V (xa))K + (
h̄

2mi

∂2Sc

∂2xa

)K.

We see the same pattern again, a term with no h̄, and a term proportional to h̄. It turns
out that the terms without h̄ on both sides of the equation automatically cancel, that is

−∂Sc

∂t
=

1

2m
(
∂Sc

∂xa

)2 + V (xa).

This is an equation called the Hamilton-Jacobi equation and is satisfied by the classical
action. It is really saying

E =
p2a
2m

+ V (xa),

where E is the energy, since −∂tS = E, and ∂xS = p. While the energy is constant, the
momentum is in general not constant. This is taken account of, since differentiating with
respect to the final coordinate gives the final momentum, and differentiating with respect
to the initial coordinate gives minus the initial momentum. A simple example where this
can all be checked easily is the free particle, which in the present notation has a classical
action given by

Sc =
m(xa − xb)

2

2t
So if we can find the classical action Sc(xa, xb, t) for a given problem, the semiclassi-
cal expression for the propagator automatically satisfies the part of the time-dependent
Schrödinger equation independent of h̄.We are left with theO(h̄) terms. If the Schrödinger
equation is to be satisfied, we must have

ih̄

F

∂F

∂t
=

h̄

2mi

∂2Sc

∂2xa

.

For the harmonic oscillator, using the formulae given above for Sc and F, it is easy to
check that this equation is indeed satisfied. So along with the free particle, the harmonic
oscillator is an example where the semi-classical approximation to the propagator is exact.
There are a few other problems where this is true as well.

Formula for F In the discussion above, we got the factor F for the oscillator by some
guesswork from the free particle case. It turns out that there is a general formula for F .
This is

F =

√
1

2πih̄
(− ∂2Sc

∂xa∂xb

),

so in fact the full semiclassical approximation for K can be expressed in terms of the
classical action. This is pleasing. In general semiclassical methods are useful in the limit
of large quantum numbers, for example an electron in a high n orbit. The semiclassical
method continues to develop. A sample of beautiful work on the subject is on the website
of Eric Heller, a Harvard physicist.


