
Static Perturbation Theory

Static perturbation theory is concerned with getting corrections to bound state energies
and wave functions due to a perturbing potential, V. The total Hamiltonian is written

H = H0 + V.

It is assumed that H0 is a soluble Hamiltonian whose eigenstates and energies are known.
An eigenstate of H0 satisfies

H0|Ψ(0) >= E(0)|Ψ(0) >,

while a eigenstate of the full Hamiltonian satisfies

H|Ψ >= (H0 + V )|Ψ >= E|Ψ > .

The eigenstates of H0 are a complete set, in which the eigenstates of H may be expanded,

|Ψn >=
∑
m

|Ψ(0)
m > cmn.

The coefficients cmn are overlaps of exact and unperturbed eigenstates,

cmn =< Ψ(0)
m |Ψn > .

Using this expansion, consider the nth exact eigenstate,

H|Ψn >= En|Ψn > .

We have
H0|Ψ(0)

m >= E(0)
m |Ψ(0)

m >,

so
H|Ψn >=

∑
m

En|Ψ(0)
m > cmn

=
∑
m

(H0 + V )|Ψ(0)
m > cmn

=
∑
m

(E(0)
m + V )|Ψ(0)

m > cmn.

Re-arranging this equation, we have∑
m

(En − E(0)
m )|Ψ(0)

m > cmn =
∑
m

V |Ψ(0)
m > cmn

Taking the matrix element of this equation with < Ψ
(0)
l |, we have

(En − E
(0)
l )cln =

∑
m

Vlmcmn, (1)



where
Vlm =< Ψ

(0)
l |V |Ψ(0)

m > .

Eq.(1) is still exact and is equivalent to the original Schrödinger equation. At this
point, we introduce the perturbation expansion. Quantities are classified in terms of
their order in the perturbing potential, V. V is regarded as first order, so of course the
matrix elements Vmn are also first order. The coefficients and the energy eigenvalues are
expanded in orders or powers of V ,

cmn = c(0)mn + c(1)mn + . . .

En = E(0)
n + E(1)

n + . . .

Non Degenerate Case At this point, we assume the spectrum ofH0 is non-degenerate,
meaning that for each energy eigenvalue there is only one quantum state. Each of these
states goes over into an eigenstate of the full Hamiltonian. At 0th order the potential is
absent, so the eigenstates of H0 are the eigenstates of the Hamiltonian, which implies

c(0)mn = δmn

Writing Eq.(1) to first order, we have

(E(0)
n − E

(0)
l )c

(1)
ln + E(1)

n c
(0)
ln =

∑
m

Vlmc
(0)
mn.

The index l is arbitrary. Choosing l = n we have

n = l → E(1)
n = Vnn. (2)

This is probably the most useful result in perturbation theory, and says that to first order
the shift in an energy eigenvalue is the expected value of the potential in the unperturbed
state.

Taking n ̸= l, we have

n ̸= l → c
(1)
ln =

1

(E
(0)
n − E

(0)
l )

Vln.

The c
(1)
ln determine the first order change in the eigenfunction. To maintain normalization

of the perturbed eigenstate to O(V )2, we set

c(1)nn = 0.

We finally have for the first order perturbation in the nth eigenstate,

|Ψ(1)
n >=

′∑
m

1

(E
(0)
n − E

(0)
m )

|Ψ(0)
m > Vmn.



For perturbation theory to be valid, this must be a small correction, so we need

| Vmn

(E
(0)
n − E

(0)
m )

| << 1.

Going to second order, from Eq.(1) we have

E(2)
n c

(0)
ln + E(1)

n c
(1)
ln + (E(0)

n c
(1)
ln − E

(0)
l )c

(2)
ln =

∑
m

Vlmc
(1)
mn.

Choosing l = n and using c(0)nn = 1, and c(1)nn = 0, we have an equation for the second order
shift,

E(2)
n =

′∑
m

VnmVmn

(E
(0)
n − E

(0)
m )

.

This is also a very useful equation, particularly in the case (which happens often) when
the first order shift vanishes. Note that the second order shift for the ground state is
always negative.

Degenerate Case When there is more than one state for a given energy in the un-
perturbed Hamiltonian, H0, our previous treatment needs modification. The potential V
may have matrix elements between several of these unperturbed states, and our previous
formula for the first order shift, Eq.(2) no longer makes sense.

Suppose that for the nth eigenvalue of H0, we have d states, all with the same eigen-
value E(0)

n of H0. In what follows, we will suppress the index n and only keep
an index 1, 2, . . . d which labels the d different states of H0 that exist with the
same energy. Our goal is to replace the original basis of degenerate states, |Ψ(0)

j > with

a new basis, |Ψ(0)′
j >, where j = 1, 2, . . . , d. We expand the new basis in terms of the old

as follows:

|Ψ(0)′
j >=

d∑
k=1

|Ψ(0)
k > c

(0)
kj (3)

From this equation, we have

c
(0)
kj =< Ψ

(0)
k |Ψ(0)′

j >, (4)

so the left index of c
(0)
kj is in the old basis, and the right index is in the new basis. The

defining property of the new basis is that in it, the potential is diagonal. Writing this
out we have

< Ψ
(0)′
k |V |Ψ(0)′

j >= E
(1)
j < Ψ

(0)′
k |Ψ(0)′

j >= E
(1)
j δkj, (5)

where E
(1)
j , j = 1, 2, . . . , d are the d new values of the first order shift in the energy. To

find the energy shifts and new basis, we rewrite the previous equation as an operator
equation, in the d× d space of degenerate states. We have

V |Ψ(0)′
j >= E

(1)
j |Ψ(0)′

j >, (6)



which merely states that |Ψ(0)′
j > is an eigenstate of V with eigenvalue E

(1)
j . Now taking

the matrix element with an unperturbed state < Ψ
(0)
k |, we obtain

< Ψ
(0)
k |V |Ψ(0)′

j >= E
(1)
j < Ψ

(0)
k |Ψ(0)′

j >= E
(1)
j c

(0)
kj (7)

Using the expansion of Eq.(3), we obtain

d∑
l=1

< Ψ
(0)
k |V |Ψ(0)

l > c
(0)
lj = E

(1)
j c

(0)
kj , (8)

or
d∑

l=1

(Vkl − E
(1)
j δkl)c

(0)
lj = 0. (9)

Eq.(9) is an equation for the eigenvalues of Vkl. It is customary in solving such an equation

to suppress the index j on E
(1)
j and c

(0)
lj , so we would have

d∑
l=1

(Vkl − E(1)δkl)c
(0)
l = 0. (10)

This is a set of d homogeneous equations for the unknowns c
(0)
l . The only solution other

than all the c
(0)
l = 0 is found by setting the determinant of the coefficients equal to zero.

This gives

det


V11 − E(1) V12 .

V21 V22 − E(1) .
...

...
...

. . Vdd − E(1)

 = 0. (11)

Eq.(11) is a dth order equation for the E(1), which will determine d different eigenvalues

E
(1)
1 , E

(1)
2 , . . . , E

(1)
d . After solving this equation, a specific E

(1)
j is chosen. We then return

to Eq.(9). There are d equations, but only d − 1 are independent. Using these d − 1

equations, allows a solution for the ratios of the c
(0)
lj . The last step is normalization. The

normalization condition is
d∑

l=1

|c(0)lj |2 = 1. (12)

At this point, |Ψ(0)′
j > is completely determined. Then another value of j is chosen and

the process is repeated until all the states in the new basis are found.
The case of a two-fold degeneracy is an important special case, and provides an

illustration of the formalism. Writing out Eq.(11) for this case, we have

det

(
V11 − E(1) V12

V21 V22 − E(1)

)
= 0. (13)



The resulting quadratic equation is solved by

E(1) =
1

2

(
V11 + V22 ±

√
(V11 − V22)2 + 4V12V21

)
. (14)

Restoring the index j, we assign j = 1 to the lower eigenvalue and j = 2 to the upper
one, so

E
(1)
1 =

1

2

(
V11 + V22 −

√
(V11 − V22)2 + 4V12V21

)
E

(1)
2 =

1

2

(
V11 + V22 +

√
(V11 − V22)2 + 4V12V21

)
Choosing j = 1, returning to Eq.(8), and writing out the equation for k = 1, we have

1

2

(
V11 − V22 +

√
(V11 − V22)2 + 4V12V21

)
c
(0)
11 + V12c

(0)
21 = 0. (15)

( Eq.(8) for k = 2 gives an equation equivalent to Eq.(15).) Eq.(15) is then used to

determine a ratio of coefficients, say c
(0)
21 /c

(0)
11 , and finally the normalization condition

|c(0)11 |2 + |c(0)21 |2 = 1 (16)

finishes the determination of c
(0)
j1 up to an unimportant phase factor. With the c

(0)
j1 in

hand, the new basis eigenfunction |Ψ(0)′
1 > is determined;

|Ψ(0)′
1 >= |Ψ(0)

1 > c
(0)
11 + |Ψ(0)

2 > c
(0)
21 . (17)

Similar steps determine |Ψ(0)′
2 > .

Restoring the index n, we now have for a two-fold degeneracy, that E(0)
n is split by V

into two levels with energies E(0)
n + E

(1)
n1 , and E(0)

n + E
(1)
n2 . In the new basis at level n, V

is diagonal, and its matrix elements are E
(1)
n1 , and E

(1)
n2 .


