
Charge in Magnetic Field

Consider the motion of a charge in combined electric and magnetic fields. The equation
of motion is

m
d~v

dt
= q ~E +

q

c
~v × ~B, (1)

where in Gaussian units, we have

~E = −1

c

∂ ~A

∂t
− ~∇φ, ~B = ~∇× ~A,

where φ, ~A, are scalar and vector potentials, respectively. In order to do quantum me-
chanics, a classical Lagrangian and Hamiltonian are needed. The classical Lagrangian
is

L =
m

2
~v · ~v +

q

c
~v · ~A− qφ.

It is easily checked that the Lagrange equations from L produce Eq.(1). The canonical
momentum from the Lagrangian is

~p = m~v +
q

c
~A,

and the classical Hamiltonian is constructed in the usual way;

H = ~p · ~v − L.

Using

~v =
1

m
(~p− q

c
~A),

we have

H =
1

2m
(~p− q

c
~A)2 + qφ.

To proceed to quantum mechanics, we replace ~p by h̄~∇/i as usual, and obtain

H =
1

2m
(
h̄

i
~∇− q

c
~A)2 + qφ.

The description of a given magnetic field by a vector potential is not unique. We will use
a so-called ”symmetric” gauge, where in terms of an applied constant magnetic field, ~A
is

~A =
1

2
~B × ~r

Using this vector potential and writing the Hamiltonian for a hydrogen atom in an
external magnetic field, we have

H = − h̄2∇2

2m
+

eh̄

2mc
~B · (~L + 2~S) +

e2

8mc2
( ~B × ~r)2 − e2

r
,



where the charge of the electron is −|e|, and the contribution of the electron magnetic
moment has been included. (Angular momenta are measured in units of h̄ in this for-
mula.) The term quadratic in the magnetic field is a new term, not seen in our previous
treatment, where we used simple classical arguments to get the magnetic moment of the
circulating charge in an atom. In fact, the quadratic term in B is very small for an atom.
The reason is that the Coulomb potential keeps the electron at distances of order a0 from
the nucleus, and for those distances, it is easily seen that the quadratic term is very small
compared to the linear term. To show this, the following numerical formula is useful:

e(gauss)a0 = 1.6× 10−6eV

Free Charge in Magnetic Field We now turn away from electrons in atoms, to the
quantum mechanics of a free charge in an external magnetic field. Although such a charge
is typically an electron, to avoid excessive minus signs, we take the charge to be positive,
q = +|e|. For this case the Hamiltonian is

q = |e|, H =
1

2m
(
h̄

i
~∇− e

c
~A)2

For an external magnetic field along ẑ, we have

~B = Bẑ, Ay =
1

2
Bx, Ax = −1

2
By,

so the Hamiltonian is

H =
1

2m

(
−h̄2∇2 − eB

c
Lz +

e2B2

4e2
(x2 + y2)

)
.

To avoid repeated writing of physical constants, we rewrite H in ”magnetic units.” There
is a natural unit of length, known as the magnetic length, as well as a natural frequency,
the cyclotron frequency. The definitions are

lB =

√
h̄

mωc

, ωc =
eB

mc
, lB = a0

4.83× 104

√
B(gauss)

The last formula shows that for any magnetic field ≤ 1T, the magnetic length is many
Bohr radii. This is ultimately the reason the quadratic term in B must be kept in this
case, whereas it was small for an electron in an atom. Using lB as the unit of length, h̄ωc

as the unit of energy, and measuring Lz in units of h̄, the Hamiltonian now reads

H = −1

2
(∇2 + Lz) +

ρ2

8
,

where ρ2 + x2 + y2. This Hamiltonian looks rather simple. It becomes even simpler if we
study the special case,

Lz = 0.



Then we have

H = −∂2
x + ∂2

y

2
+

x2 + y2

8
,

which clearly is just two harmonic oscillators, one in x, the other in y. The ground state
wave function and eigenvalue are easily found;

Ψ0,0 =
1√
2π

exp(−ρ2

4
), E =

1

2

Now let us relax the condition Lz = 0 and search for some more wave functions and
eigenvalues. As in all oscillator problems we expect the exponential of the ground state
to appear in excited state wave functions. A simple trial wave function with Lz = m is
then

Ψ = ρ|m| exp(imφ) exp(−ρ2

4
)

(NOTE: The variable φ is the angle in plane polar coordinates here.) It is best now to
use plane polar coordinates in H, and we have

H = −1

2
(
1

ρ
∂ρρ∂ρ +

1

ρ2
∂2

φ +
1

i
∂φ) +

ρ2

8

Applying H in this form to our trial wave function, we find that it is indeed an eigen-
function

HΨm = (
1 + |m| −m

2
)Ψm,

So the eigenvalue depends on the sign of m as follows: for

m > 0, E =
1

2

while for

m < 0, E = |m|+ 1

2

Let us relate these eigenvalues to the classical motion of this charge. The classical motion
is a circle, and the positive charge moves clockwise around the B field, or in other words
the classical motion corresponds to m < 0. The states with m > 0 or the ”wrong” value
of angular momentum, we see have the minimum possible energy, E = 1/2, the same
as Ψ0,0. So the lowest energy state is tremendously degenerate; any value of m ≥ 0 has
E = 1/2. It turns out that the excited states are also tremendously degenerate as well.
This will become clear later.

For the case m < 0, the wave function has the properties appropriate to clockwise
circular motion, centered on the origin. What we have found is only a small subset of the
excited states. In particular, we at present cannot see how to represent circular motion
which is centered at some place other than the origin. For that we turn to creation and
destruction operator methods.



Creation and Destruction Operators We will temporarily introduce a frequency,
so as to make the formulas more familiar. For us ω = 1/2, where the unit of frequency
is the cyclotron frequency, ωc = eB/mc. We retain the h̄ = 1 feature of magnetic units.
We write

H = H0 − ωLz,

where

H0 =
1

2
(p2

x + ω2x2 + p2
y + ω2y2).

Clearly H0 is just two independent harmonic oscillators. Introducing creation and de-
struction operators for x and y, we have

x =
ax + a†x√

2ω
, y =

ay + a†y√
2ω

,

and

px = −i

√
ω

2
(ax − a†x), py = −i

√
ω

2
(ay − a†y).

Inverting these equations, we obtain

ax =
1√
2ω

(ωx + ipx), ay =
1√
2ω

(ωy + ipy). (2)

Using these results, we can express H0 and Lz in terms of creation and destruction
operators,

H0 =
ω

2
(a†xax +

1

2
+ a†yay +

1

2
),

and
Lz = −i(a†xay − a†yax)

Charged Oscillators As always in planar problems, it is better to use complex com-
binations rather than Cartesian components. We define

Φ = x + iy, Φ† = x− iy. (3)

Using our results above, we can write Φ as

Φ =
1√
2ω

(
(ax + iay) + (a†x + ia†y)

)
.

This is still using Cartesian operators. The so-called ”charged” operators are defined by
setting

Φ =
a + b†√

ω
. (4)



(NB The term ”charged” is slightly out of place here. It is not the charge of the particle,
rather in our present problem it is −Lz. The terminology has a field theory origin.)
Comparing the two forms for Φ, we have

a =
ax + iay√

2
, b =

ax − iay√
2

. (5)

The a’s and b’s form a set of independent creation and destruction operators.

[a, a†] = [b, b†] = 1, [a, b] = [a, b†] = 0

The goal now is to express our Hamiltonian in the a, b language. For this we invert the
definitions of a and b to find

ax =
1√
2
(a + b), ay = −i

1√
2
(a− b)

Substituting for these in H0, we have

H0 = ω(a†a +
1

2
+ b†b +

1

2
).

Doing the same for Lz, gives
Lz = (b†b− a†a)

Restoring

ω =
1

2
,

we finally have

H = H0 − ωLz = a†a +
1

2
.

This is an interesting formula. We see that the energy is independent of the b oscillators
and only depends on the a oscillators. So a state like

(a†)n2(b†)n1|0, 0 >

has energy E = n2 + 1/2, but angular momentum Lz = n1 − n2. This allows us to see
that excited states are also highly degenerate. The value of n2 determines the energy,
while n1 can have any positive value whatsoever.

For finding explicit forms of wave functions, it is useful to have the a’s and b’s ex-
pressed as differential operators. Using Eqs.(2) and (5), we can do this. The results
are

a =
1√
2
(
x + iy

2
+ (∂x + i∂y)), a† =

1√
2
(
x− iy

2
− (∂x − i∂y))

b =
1√
2
(
x− iy

2
+ (∂x − i∂y)), b† =

1√
2
(
x + iy

2
− (∂x + i∂y))

The best way to use these operators is to express them in terms of x+ = x+iy, x− = x−iy,
and ∂+ = ∂x + i∂y, and ∂− = ∂x − i∂y.



Coherent States and Classical Motion The best way to see the classical motion,
including the location of the center of the circle is to use coherent states. Our problem
involves two sorts of creation and destruction operators, a, a†, and b, b†. It will turn out
that the a operators control the circular motion, and the b operators control the location
of the center of the circle. We will use states which are coherent in both a and b. That
is we have states |α, β > with the properies

a|α, β >= α|α, β >, b|α, β >= β|α, β > .

These have the important properties

< α, β|α|α, β >= α, < α, β|α†|α, β >= α∗

< α, β|β|α, β >= β, < α, β|β†|α, β >= β∗

All of our coherent states are built by using |0, 0 > which has wave function

< x, y|0, 0 >=
1√
2π

exp(−x2 + y2

4
)

The coherent state |α, β > is built by applying exponentials of a† and b†. We have

|α, β >= exp(αa† + βb†)|0, 0 > exp(−1

2
(|α|2 + |β|2)

To relate these to expected values of x and y, we return to Eqs.(3)and (4) and solve for
x and y. This gives

x =
1

2
√

ω
(a + a† + b + b†), y =

1

2i
√

ω
(a− a† − b + b†).

The classical motion will be the result of calculating

< α, β|x(t)|α, β >, < α, β|y(t)|α, β >

where
x(t) = exp(iHt)x exp(−iHt), y(t) = exp(iHt)y exp(−iHt)

From our previous results, we have

H = 2ω(a†a + 1).

From this formula it follows that the operators b and b† are independent of time, while

a(t) = exp(−2iωt)a, a†(t) = exp(2iωt)a†.

Since 2ω is just the cyclotron frequency, we see that a(t) and a†(t) move with the cyclotron
frequency. These operators describe the circular motion. Meanwhile the center of the
circle, which is constant in time is determined by the b and b† operators. Denoting the
center of the circle by x0, y0, we have

x0 =
1

2
√

ω
(β + β∗), y0 = − 1

2i
√

ω
(β − β∗),

where as before ω = 1/2, in units of ωc.



Changing the Gauge We have so far done all our calculations in the so-called “sym-
metric” gauge, which has

~A =
1

2
~B × ~r.

All physical quantities can be calculated in this gauge. A gauge must be chosen, but
once a gauge is chosen, every physical quantity can be determined. From this viewpoint,
there is no need to discuss other gauges. Nevertheless, certain quantities are easier to
obtain in different gauges, and it is imporant to know how to change the gauge, which
is nothing other than changing ~A in such a way that the electromagnetic fields ~E and
~B remain the same. Suppose then that we want to go from ~A1 to ~A2. To maintain the
same fields, the two must differ by at most a gradient,

~A2(~x) = ~A1(~x) + ~∇χ(~x)

Wave functions transform when a gauge transformation is made:

Ψ2(~x) = exp(
iqχ

h̄c
)Ψ1(~x).

Gauge transforming both the vector potential and the wave function, the Schrödinger
operator

1

2m


 h̄~∇

i
− q ~A2

c




2

Ψ2

goes over to

1

2m


 h̄~∇

i
− q ~A1 + ~∇χ

c




2

exp(
iqχ

h̄c
)Ψ1

= exp(
iqχ

h̄c
)

1

2m


 h̄~∇

i
− q ~A1

c




2

Ψ1.

As a consequence, if we start with a Ψ2 eigenstate and make a gauge transformation,
The Schrödinger equation

1

2m


 h̄~∇

i
− q ~A2

c




2

Ψ2 = EΨ2

becomes

exp(
iqχ

h̄c
)




1

2m


 h̄~∇

i
− q ~A1

c




2

Ψ1


 = exp(

iqχ

h̄c
)EΨ1

So the wave functions transform by a space-dependent phase factor, while the energy is
gauge invariant.



Landau Gauge Many papers written on the quantum mechanics of free charges in
magnetic fields use a gauge introduced by Landau, where

Ax = −By, Ay = 0, Az = 0.

Regarding the symmetric gauge as ~A1 and Landau gauge as ~A2, we can determine the
gauge function χ by writing

(−By, 0, 0) = (−By

2
,
Bx

2
, 0) + ~∇χ,

which gives

~∇χ = (−By

2
,−Bx

2
, 0)

or discarding a constant,

χ = −Bxy

2
.

Thus for a charge |e|, we would transform wave functions as follows:

ΨL = exp(−i
e

2c
Bxy)Ψ1

The Schrödinger equation in Landau gauge is

1

2m

(
(
h̄

i
∂x +

eBy

c
)2 + (

h̄

i
∂y)

2

)
Ψ = EΨ (6)

where as in the symmetric gauge, we have restricted the motion to the x−y plane. Going
over to magnetic units as we did in the symmetric gauge, the Schrödinger equation in
Landau gauge reads

1

2

(
(
1

i
∂x + y)2 + (

1

i
∂y)

2
)

Ψ = EΨ,

where as usual distances are measured in units of lB =
√

h̄/mωc and energy is measured

in units of h̄ωc. The Schrödinger equation in Landau gauge, Eq.(6) does not involve an
x-dependent potential, so plane wave dependence on x can be assumed. We set

Ψ =
1√
2π

eikxΨ̃(y)

The equation for Ψ̃ is (
−∂2

y

2
+

(y + k)2

2

)
Ψ̃ = EΨ̃,

which is just a displaced harmonic oscillator. If we put the oscillator in its ground state,
we have

Ψ(x, y) =
1

2π
eikxe−

1
2
y2

,

which has E = 1/2. Again we see the huge degeneracy of a given energy eigenvalue. Any
value of k gives the same energy.



Degeneracy of Landau levels An important feature of the levels of a charge in a
magnetic field is the number of particles which can be put into a given level, where of
course we are referring to fermions, electrons in almost all cases. The Pauli principle
allows only one particle per state. We have seen that the levels are quite degenerate. It
is fair to ask, if there is a rectangular sample of dimensions Lx×Ly, how many electrons
can be put into a given level with energy

E = h̄ωc(n +
1

2
)?

The answer is independent of gauge, but is easy to find in Landau gauge. The restriction
to

0 ≤ x ≤ Lx

makes the allowed values of k discrete, given by

k =
2nπ

Lx

So we can start off counting states by forming the sum

∑

k

which counts each state once. This has no apparent restriction on k until we note that
the plane wave states in x are accompanied by the harmonic oscillator wave function of
y + k. For any state, not just the ground state, this will have the gaussian factor

exp(−1

2
(y + k)2).

Keeping the center of this gaussian inside the range 0 ≤ y ≤ Ly, will restrict the range
of k. For y = 0, the center of the gaussian is at k = 0, while for y = Ly, the center of the
gaussian is at k = −Ly. The range of k values must then lie in the range −Ly ≤ k ≤ 0.
Returning to the counting of states, we have

∑

k

→ Lx

2π

∫ 0

−Ly

dk =
LxLy

2π

Returning to ordinary units, the degeneracy is

LxLy

2πl2B
= (LxLyB)

e

2πh̄c

We note that LxLyB is just the magnetic flux through the area LxLy. The quantity

Φ0 =
2πh̄c

2e
= 2.0678× 10−7Gauss · cm2



also has dimensions of flux and is known as the “quantum fluxoid.” Note the factor
of 2e in the definition. Counting both components of spin, a given Landau level can
accommodate

LxLyB

Φ0

electrons. In an experiment, the dimensions Lx, Ly are known only with limited precision.
Further, the degeneracy as calculated above is not a precise number. The formula gives
the term in the degeneracy which is proportional to the area of the sample. There
would of course be correction terms which grow more slowly with the dimensions of
the sample. Nevertheless, the filling of Landau levels can be seen experimentally by
examining physical quantities such as the magnetization as the magnetic field is varied.
Certain quantities vary periodically in the magnetic field and this can be used as an
imporant diagnostic of the system being studied.


