
Stark Effect

The Stark effect is the shift in atomic energy levels caused by an external electric field.
There are various regimes to consider. The one treated here is the so-called strong field
case, where the shift in energy levels due to the external electric field is large compared
to fine structure (although still small compared to the spacings between the unperturbed
atomic levels.) In the strong field limit, the Stark effect is independent of electron spin.

We start with the ordinary hydrogen Hamiltonian,

H0 =
p2

2m
− e2

r

and add a term arising from a uniform electric field along the z axis.

H ′ = eEz.

Note the + sign on this term. It is easily checked by remembering that the force on the
electron due to this term would be obtained by taking −∂z, which gives a force along
the −z axis, as it should for an electron. To understand the matrix elements that are
non-zero, it is useful to temporarily give the external electric field an arbitrary direction,

H ′ = eE⃗ · x⃗

The selection rules on the matrix elements of x⃗ are

< n′, l′,m′|x⃗|n, l,m > ̸= 0, l′ = l ± 1.

These follow from angular momentum conservation (x⃗ has angular momentum 1), and
parity (x⃗ is odd under parity). Returning to the case of the electric field along the z axis,
we have an additional selection rule on m,

< n′, l′,m′|z|n, l,m > ̸= 0, l′ = l ± 1, m′ = m

From these selection rules we see that non-zero matrix elements require different values
of l. Now for n = 1 there is only l = 0, so

n = 1, l = 0 → no first order Stark Effect.

However, for n = 2, we have two l values, so

n = 2, l = 0, 1,→ l = 0 ↔ l = 1

Listing the states for n = 2, we have

Ψ200,Ψ211,Ψ210,Ψ21−1

However, l = 0 has only m = 0, so the selection rule on m says we only have non-zero
matrix elements

l = 0 ↔ l = 1 → Ψ200 ↔ Ψ210
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Without the electric field these states have the same energy, so we have a 2× 2 problem
in degenerate perturbation theory. The matrix element we need is proportional to

< 210|z|200 >=< 200|z|210 >

We label the two degenerate states as follows:

200 → 1 210 → 2

Using this notation, we need to find new linear combinations of these degenerate states,
and along the way we find values for the perturbed energy eigenvalues. The equations
which accomplish both of these tasks are(

E(1) 0
0 E(1)

)(
c1
c2

)
=

(
H ′

11 H ′
12

H ′
21 H ′

22

)(
c1
c2

)
.

By our selection rules, the diagonal matrix elements vanish,

H ′
11 = H ′

22 = 0

and
H ′

12 = H ′
21 = eE < 200|z|210 > .

The wave functions of our states are

Ψ200 = N20(1−
r

2a0
) exp(− r

2a
)

1√
4π

,

Ψ210 = N21r exp(−
r

2a
)

√
3

4π
cos θ,

Where the N ′s are normalization factors, given below. It is useful at this point to go
over to atomic units,

z → a0r
′ cos θ, E → e

a20
E ′,

and we subsequently drop the ′ on atomic unit quantities. The matrix element we need
is an exercise in elementary integrations. We have

< 200|r cos θ|210 >= N20N21

∫
dΩ

∫
r2dr(1−r

2
) exp(−r/2)r(r exp(−r/2))

√
3

4π
cos2 θ = −3,

so
H ′

12 = H ′
21 = −3E

Moving the matrix elements of H ′ to the left side of our equation, we have(
E(1) 3E
3E E(1)

)(
c1
c2

)
= 0.
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This only allows a non zero solution for c1 and c2 if the determinant of the coefficients
vanishes, or

(E(1))2 − (3E)2 = 0.

This gives the two eigenvalues
E(1) = ±3E .

These two values determine the amounts by which the n = 2 level is split by the external
electric field. To determine the corresponding wave functions, we go back to the equa-
tions, with E(1) set equal to one of the eigenvalues. Taking first the lower eigenvalue, we
have

E(1) = −3E ,
(

−3E 3E
3E −3E

)(
c1
c2

)
= 0.

This gives

c1 = c2, Ψ− =
1√
2
[Ψ200 +Ψ210],

where Ψ− is now the correct unperturbed wave function corresponding to the lower
eigenvalue. Said another way, the perturbing Hamiltonian has matrix element −3E in
the state Ψ−. Doing the same for the upper eigenvalue, we have

E(1) = 3E ,
(

3E 3E
3E 3E

)(
c1
c2

)
= 0,

which gives

c1 = −c2, Ψ+ =
1√
2
[Ψ200 −Ψ210],

and Ψ+ has +3E for the matrix element of the perturbed Hamiltonian. In writing Ψ+

and Ψ−, we have supplied the normalization factor 1/
√
2. In atomic units, the states Ψ200

and Ψ210 with normalization factors supplied are

Ψ200 = R20Y
0
0 =

1√
2
(1− r

2
) exp(−r

2
)

1√
4π

,

and

Ψ210 = R21Y
1
0 =

1

2
√
6
r exp(−r

2
)

√
3

4π
cos θ

With these formulas the wave functions Ψ+ and Ψ− are easily constructed and their
properties explored. This is done in more detail in Homework Set 2. The basic qualitative
feature is that Ψ− favors an increased electron density for z < 0 and a decreased electron
density for z > 0 as expected for the effect of a force directed along the negative z axis.
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