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1 Symmetry of an action

Throughout this problem, we ignore the Poincare symmetry (translation + Lorentz).

1.1

This action has only a Z2 symmetry: a2 → −a2, which is not a continuous symmetry, so
there’s no conserved current.

1.2

Let ϕ = a1 + ia2, the Lagrangian then becomes

L =
1

2
(∂µϕ∂

µϕ∗ −m2|ϕ|2 − λ|ϕ|4),
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where |ϕ|2 = ϕ∗ϕ. We can see that changing the phase of the complex field doesn’t change
the action. So the action has a U(1) symmetry(this symmetry can also be thought of as the
rotation between a1 and a2, which is an SO(2) symmetry). The corresponding transformation
is δa1 = ϵa2, δa2 = −ϵa1. The corresponding conserved current is thus

jµ = a1∂µa2 − a2∂µa1

1.3

If we write ϕ = ρeiθ, then the term a21a
2
2 ∝ sin 2θ, which break the U(1) symmetry. So there’s

no continuous symmetry.

1.4

Let ϕ = a1 + ia2, χ = a3 + ia4, we then have

L =
1

2
(∂µϕ∂

µϕ∗ −m2|ϕ|2 + ∂µχ∂
µχ∗ −m2|ϕ|2 − ν2ℜ[ϕχ]),

where ℜ[z] means the real part of z. There’s a U(1) symmetry when we transform ϕ →
eiαϕ, χ→ e−iαχ, or, written in infinitesimal form,

δa1 = ϵa2, a2 = −ϵa1; a3 = −ϵa4, a4 = ϵa3.

The corresponding conserved current is

jµ = a1∂µa2 − a2∂µa1 − a3∂µa4 + a4∂µa3.

2 Charges as generator of a symmetry

2.1

Let A = iQkϵ
k, B = ψb(x), and insert into the formula given in the problem, we have

[A,B] = iϵk[Qk, ψ
b(x)] = iϵkλbaψ

a(x),

[A, [A,B]] = (iϵl) ∗ (iϵk)[Ql, λ
b
aψ

a(x)] = (iϵlλl)
2b
a ψ

a

......

We thus prove that eiϵ
kQkψb(x)e

−iϵkQk =
(
eiϵ

kλk

)a

b
ψa.

2



2.2

t1 = −i

0 0 0
0 0 1
0 −1 0

 , t2 = −i

0 0 −1
0 0 0
1 0 0

 , t3 = −i

 0 1 0
−1 0 0
0 0 0


2.3

For the infinitesimal transformation δψa = (tk)
b
aψb, the conserved charge desity is

J0
k (x, t) = πa(x, t) (tk)

a
b ψb(x, t). (1)

Compute the commutator

[J0
k (x), J

0
ℓ (y)] = [πa(x)(tk)

a
b ψb(x), πc(y)(tℓ)

c
d ψd(y)] . (2)

Only terms where a momentum encounters a field at the same time and location contribute.
We get

[J0
k (x), J

0
ℓ (y)] = πa(x)(tk)

a
b [ψb(x), πc(y)] (tℓ)

c
d ψd(y)

− πc(y)(tℓ)
c
d [ψd(y), πa(x)] (tk)

a
b ψb(x). (3)

Using [ψb(x), πc(y)] = iδbcδ
3(x− y) and [ψd(y), πa(x)] = −iδdaδ3(x− y), this becomes

[J0
k (x), J

0
ℓ (y)] = i πa(x)(tk)

a
b(tℓ)

b
d ψd(y) δ

3(x− y)

+ i πc(y)(tℓ)
c
d(tk)

d
b ψb(x) δ

3(x− y). (4)

Using the delta to set y → x inside operators and relabeling indices, we obtain

[J0
k (x), J

0
ℓ (y)] = i πa(x)

[
(tktℓ)− (tℓtk)

]a
b ψb(x) δ

3(x− y)

= i πa(x)[tk, tℓ]
a
b ψb(x) δ

3(x− y). (5)

Using the Lie algebra [tk, tℓ] = i εkℓmtm, we get

[J0
k (x), J

0
ℓ (y)] = i εkℓm J

0
m(x) δ

3(x− y) (6)

3 Casimir Energy

3.1 (a) and (b)

Fourier expand

ϕ(x, t) =
∑
n∈Z

ϕn(t) e
ipnx, (7)
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with periodicity requiring

eipnL = 1 ⇒ pn =
2πn

L
, n ∈ Z. (8)

For a massless field, ωn = |pn| = 2π|n|/L. A real field implies ϕ−n = ϕ∗
n, and the vacuum

energy (zero-point energy) is formally

E0 =
∑
n̸=0

1

2
ωn =

∞∑
n=1

(
1

2
ωn +

1

2
ω−n

)

=
∞∑
n=1

ωn =
∞∑
n=1

2πn

L
. (9)

Often one rewrites this as

E0 =
π

L

∞∑
n=1

n, (10)

absorbing conventions into the overall factor. Thus in the notation E0 = #
∑∞

n=1 n, we have

# =
π

L
. (11)

3.2 regulation

We can consider the regulated energy

EΛ
0 =

π

L

∞∑
n=1

nen/ΛL (12)

Recall that

∞∑
n=1

ne−an = − d

da

∞∑
n=1

e−an = − d

da

e−a

1− e−a
=

e−a

(1− e−a)2
.

We thus have

EΛ
0 =

π

L

e−1/ΛL

(1− e−1/ΛL)2
(13)

Let x = 1
ΛL

, when Λ → ∞, α→ 0,

e−x

(1− e−x)2
=

1

x2
− 1

12
+ o(x2) (14)

The cutoff independent part is − 1
12
.
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3.3 Casimir effect

ρ = E
L
= − π

L2 ,
∂ρ
∂L

= π
6L3 . This is the Casimir force on unit area. ( Note that the leading

term in (14) divided by L doesn’t depend on L.

4 Propagator between two mirrors

Recall that when computing the electric potential (or thus the electric field) between the two
charges in a box, we usually ”remove” the box by adding an infinite number of charges such
that at the location of the box, the potential is zero. We can do similar thing here. Suppose
we have a source placed at y, to make the potential at x=0 zero, we have to put a negative
source at x = −y, similarly, we have to put a negative source at x = 2L− y. Next, to cancel
the potential induced by these two negative source, we have to put the negative source at
2L + y and y − 2L. If we repeat the process we have positive sources on y + 2nL, negative
sources on y − 2nL, where n ∈ Z. So we have

Gbox(x, y) =
∑
n∈Z

GFree(x, y + 2nL)−GFree(x,−y + 2nL),

where GFree(x, y) is the propagator for a free massless scalar field between x and y.

5 Local QFT

Consider the Fourier decomposition of the quantum field,

ϕ(x, t) =

∫
d3x

(2π)3
e−ik·xϕ̃(k, t).

In momentum space, the equation of motion then becomes

(∂2t + k2 +m2)ϕ̃(k) = 0.

Let ωk = k2 +m2, and use the initial condiiton, we then have

ϕ̃(k, t) = ϕ̃(k, 0) cosωkt+ π̃(k, 0)
sinωkt

ωk

,

Whereϕ̃(k, 0) cosωkt, π̃(k, 0) are the Fourier transformation of the ϕ̃(k, 0) and π(k, 0) re-
spectively. We thus have

ϕ(x, t) =

∫
d3keik·x

[
ϕ̃(k, 0) cos(ωkt) + π̃(k, 0)

sin(ωkt)

ωk

]
. (15)
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Denote ∆(x, t; y, t′) =
∫

d3k
(2π)3

e−ik(x−y) sinωk(t−t′)
ωk

, we then have

ϕ(x, t) =

∫
d3y∆(x, t; y, 0)π(y, 0) + ∆̇(x, t; y, 0)ϕ(y, 0) (16)

Consider two fields ϕ(x, t), ϕ(y, t′). If they’re spacelikely separated, by performing a boost,
we can transform them into a new coordinate where they are at the same time slice, the
kernel then vanishes, so [ϕ(x, t), π(y, t′)] will then vanish, which means they’re not causally
related.
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