Spin-orbital separation in the quasi-one-dimensional Mott insulator Sr$_2$CuO$_3$

“Splitting” the electron

James Gloudemans, Suraj Hegde, Ian Gilbert, and Gregory Hart

December 7, 2012
The paper

• We describe the following article by J. Schlappa, et al., *Nature* **485**, 82 (2012).

LETTER

doi:10.1038/nature10974

Spin–orbital separation in the quasi-one-dimensional Mott insulator Sr$_2$CuO$_3$

When viewed as an elementary particle, the electron has spin and charge. When binding to the atomic nucleus, it also acquires an angular momentum quantum number corresponding to the quantized atomic orbital it occupies. Even if electrons in solids form bands and delocalize from the nuclei, in Mott insulators they retain their three fundamental quantum numbers: spin, charge and orbital1. The hallmark of one-dimensional physics is a breaking up of the elementary electron into its separate degrees of freedom2. The separation of the electron into independent quasi-separate itself completely from the holon. When instead of creating a hole, as typically is done in a photoemission experiment, an electron is excited from one copper 3d orbital to another, the phenomenon of spin–orbital separation can in principle occur (Fig. 1a). The orbiton created in this manner may also deconfine after exciting a spinon, thus splitting the electron into its orbital and spin degrees of freedom3.

Here we use high-resolution resonant inelastic X-ray scattering (RIXS) to search experimentally for spin–orbital separation in the quasi-1D copper oxide Sr$_2$CuO$_3$ (for material details, see Supplemen-
Outline

• Spin-orbital separation

• Orbitons and spinons as an example of fractionalized quasiparticles

• What are quasiparticles and fractionalization and why are they important?

• Observing orbitons in a condensed matter setting using resonant inelastic X-ray scattering

• Analysis of the paper
 • Criticism
 • Citation analysis
Spin-charge separation

A photon strikes the sample

Figure from J. Schlappa, et al., Spin-orbital separation in the quasi-one-dimensional Mott insulator Sr$_2$CuO$_3$ *Nature* 485, 82 (2012).
Spin-charge separation

Figure from J. Schlappa, et al., Spin-orbital separation in the quasi-one-dimensional Mott insulator Sr_2CuO_3 *Nature* **485**, 82 (2012).

An electron is ejected
Spin-charge separation

The vacancy is filled, bringing two “up” spins together.

Figure from J. Schlappa, et al., Spin-orbital separation in the quasi-one-dimensional Mott insulator Sr$_2$CuO$_3$ Nature 485, 82 (2012).
Spin-charge separation

Figure from J. Schlappa, et al., Spin-orbital separation in the quasi-one-dimensional Mott insulator Sr$_2$CuO$_3$ Nature 485, 82 (2012).
Spin-orbital separation

Figure from J. Schlappa, et al., Spin-orbital separation in the quasi-one-dimensional Mott insulator \(\text{Sr}_2\text{CuO}_3 \) *Nature* **485**, 82 (2012).
Spin-orbital separation

Figure from J. Schlappa, et al., Spin-orbital separation in the quasi-one-dimensional Mott insulator Sr$_2$CuO$_3$ Nature 485, 82 (2012).
Spin-orbital separation

The excited electron swaps with its neighbor

Spin-orbital separation

Why spin-orbital separation is important

• One example of particle fractionalization

• Key characteristic of 1D physics

• Predicted in the 70s, but only spin-charge separation had been observed

• Related to one explanation of high T_C superconductors
Quasiparticles, fractionalization, and deconfinement

“High energy” physics at low energy
Quasiparticles

• Spin-orbit separation can be viewed as “splitting” the electron into a spinon and orbiton.
• Does that mean spinon and orbiton are fundamental particles?
• First of all, What is a ‘fundamental particle’?

“Fundamental Particles” are excitations of the underlying Quantum fields of fundamental interactions
But are they relevant for the description for any phenomena?
Not necessarily. We need to ask about energy scales, number of particles involved etc
Quasiparticles 2

- Most of condensed matter phenomena can be described by quasiparticles. - Introduced by Lev Landau

- They are excitations of macroscopic many particle fields.

- Quantum numbers ≠ Multiples of elementary particles (‘More is Different’)
 - Fractional charge, spin
 - Different kind of statistics in low dimensions.

Quasiparticle factory

Ingredients:
- Many body physics
- Strong interaction
- Low Dimensions
- Example: Composite Fermions
- High magnetic field
- Strong Interaction
- 2 dimensions
- $CF=\text{electron}+\text{quantized flux}$
- But Fractional Charge!!
Our current ingredients

• 1-Dimension + Strong correlation = Fractionalization + Spin-Charge-Orbital deconfinement.

• Are these just ‘theoretical concepts’ or experimentally observable?

• What experimentally-observable phenomena do these ideas predict?
 • Search for particle like patterns in the spectral functions of scattering experiments like ARPES, RIXS.
Strong interactions make strong impact

- For interactions in dimensions $d>1$, Landau Fermi Liquid theory works.

 LFL theory: Quasiparticles are electrons “dressed” by the interactions and have renormalized mass, charge, etc.

- Interactions in one dimension:
 - Tomonaga-Luttinger liquid theory: predicts spin-charge separation into excitations called spinons and holons, respectively
 - Spin-orbital separation also recently predicted.

- Experiment: Not a peak in spectral function but a power law decay.

Artists impression of spin-orbit separation

Bound state with spin and orbital angular momentum

Spinons

Orbitons: xz, yz and xy orbitals
Physicist’s impression of S-O separation

\[H = -J_0 \sum_{j,\sigma} (c^+_j c_{j+1,\sigma} + \text{h.c.}) + J \sum_j S_j \cdot S_{j+1} + E_o \sum_j (1 - n_j) \]

A t-J model: Kugel-Khomskii Hamiltonian

- \(J_0 \): Orbital Exchange constants
- \(J \): Spin exchange constants
- \(E_o \): xz-orbital exchange energy
- \((1 - n_j) \): counts the particles in xz state.
Spin-orbit separation ansatz

- Deconfinement: Analogous to quark deconfinement of QCD!
- Spinons and orbitons move separately.

\[c_{i\sigma}^\dagger = s_{i\sigma}^\dagger o_i \]

\[\varepsilon_o(k) = E_o - 2J_o \cos(k) \quad \text{Orbiton Dispersion} \]

\[\varepsilon_s(k) = -2J \cos(k) \quad \text{Spinon Dispersion} \]

Spectral function for orbital excitation in RIXS

\[c_{q\sigma}^\dagger = \sum_k o_{q-k} s_{\alpha k}^\dagger \]

Resulting orbital Excitation spectrum

\[|E(q) = E_o \pm 2J_o |\sin(k)| \]
Observing orbiton quasi-particles experimentally
Why look for orbitons in Sr$_2$CuO$_3$?

- Sr$_2$CuO$_3$ possesses all the necessary ingredients for fractionalization:
 - One-dimensional
 - Strong antiferromagnetic interactions

Using RIXS to study quasiparticle excitations

First, an X-ray of known energy, momentum, and polarization is used to move a core-level electron in the solid to an excited state.

- Resonant Inelastic X-ray Scattering (RIXS) is a powerful technique used to measure the dispersion relations of the quasiparticle excitations of solids.

Using RIXS to study quasiparticle excitations

First, an X-ray of known energy, momentum, and polarization is used to move a core-level electron in the solid to an excited state.

Then a valence electron fills the empty core level, emitting an X-ray. The difference between the two X-rays yields information about the excited state.

- Resonant Inelastic X-ray Scattering (RIXS) is a powerful technique used to measure the dispersion relations of the quasiparticle excitations of solids.

Figure from Luuk J.P. Ament, et al., Resonant inelastic X-ray scattering studies of elementary excitations. Rev. Mod. Phys. 83, 705 (2011).
Advantages of RIXS

- X-rays carry significant momentum (unlike photons in optical spectroscopy), allowing excitation dispersion relations to be measured.
- Energy, momentum, and polarization of X-rays can all be measured.
- Many different types of quasiparticle excitations can be studied with RIXS.

Using RIXS to observe orbitons in Sr_2CuO_3

X-ray excites a core-level Cu electron to an unoccupied d orbital

Figure from J. Schlappa, et al., Spin-orbital separation in the quasi-one-dimensional Mott insulator Sr_2CuO_3 *Nature* 485, 82 (2012).
Using RIXS to observe orbitons in Sr$_2$CuO$_3$

The excited core electron leaves behind an unoccupied core orbital . . .

Using RIXS to observe orbitons in Sr$_2$CuO$_3$

The energy and momentum change between the two X-rays give information about the orbiton created.

RIXS spectrum of orbitons

- The dispersion of elementary excitations in Sr$_2$CuO$_3$ measured by the authors using RIXS is shown at right (note the holon dispersion is at higher energy and is omitted)

RIXS spectrum of orbitons, continued

• The dispersion of elementary excitations in Sr$_2$CuO$_3$ measured by the authors using RIXS is shown at right (note the holon dispersion is at higher energy and is omitted)

• The lower curve is shown to belong to spinons

Figure from J. Schlappa, et al., Spin-orbital separation in the quasi-one-dimensional Mott insulator Sr$_2$CuO$_3$ Nature 485, 82 (2012).
The dispersion of elementary excitations in \(\text{Sr}_2\text{CuO}_3 \) measured by the authors using RIXS is shown at right (note the holon dispersion is at higher energy and is omitted).

- The lower curve is shown to belong to spinons.
- The authors argue the upper curves are due to orbitons.

Figure from J. Schlappa, et al., Spin-orbital separation in the quasi-one-dimensional Mott insulator \(\text{Sr}_2\text{CuO}_3 \) *Nature* **485**, 82 (2012).
The experimental orbiton spectrum measured by RIXS (a) compares well with the predictions of the orbital-spin separation ansatz (b) and simulations done on a system of 28 lattice sites (c).

Criticism of J. Schlappa, *et al.*

- While the authors carefully determined which dispersion was due to spinons, they completely ignored holons, which raises questions about their identification of specific dispersions as orbitons.

More criticism of Schlappa, et al.

- The authors appear to milk their data, recycling the same data in plot after plot (see Figures 1, 3, and 4 below).

Citation analysis

• This article was published on May 3, 2012, and has been cited eight times since then. Citing papers include
 • Another RIXS experiment involving magnetic excitations in the 2D material La$_2$CuO$_4$1
 • A review article on spin-orbital entanglement in transition metal oxides2
 • A computational paper on the one-dimensional antiferromagnet CaIrO$_3$3
• No citing publications focus on orbitons, perhaps because the paper is so recent.

Acknowledgements

This presentation was based on the paper “Spin-orbital separation in the quasi-one-dimensional Mott insulator Sr$_2$CuO$_3$” by J. Schlappa, et al.

We gratefully acknowledge useful suggestions and criticism from Dr. Cooper.