Reversible Photomechanical Switching of Individual Engineered Molecules at a Metallic Surface

Duncan Nall, Eric Meier, Ben Osherson

Research is Motivated by Future Light Controlled Nanomachines

Using light to move something some nanometers can help us control nanomachines or create ‘non contact’ operations.

Current work in progress

- Light causing expansion and contraction in a polymer
- Light controlled ion channels

Azobenzene as a Piston

Azobenzene can change its shape by **photoisomerization**.

\[
\text{trans-azobenzene} \quad \xrightarrow{hv} \quad \text{cis-azobenzene}
\]

How dependent is this photoisomerization on the environment? This experiment tests this state change in a new setup.

[2] Public domain, found on wikimedia
Tert-butyl ‘stilts’ anchor azobenzene molecules to a gold surface, in a cold vacuum chamber. A STM can determine which state azobenzene molecules are in before and after light is applied.

Azobenzene with Four Stilts on Gold

Number of tert-butyl legs can be changed, which changes the azobenzene-gold separations.

Scanning Tunneling Microscopy

Control voltages for piezotube

Piezoelectric tube with electrodes

Tunneling current amplifier

Distance control and scanning unit

Tip

Sample

Tunneling voltage

Data processing and display

7.0 Å

www.nanotec.es
Methodology

• Adsorbed Azobenzene and derivatives onto a gold surface.

• Shined UV light onto molecules to cause isomerization (trans to cis)

• Used STM to observe isomerization.

Experimental Conditions

• Ultra high vacuum STM
• Azobenzene and derivatives were annealed onto Au surface at 30 K
• UV exposure (375 nm UV laser with 90 mW/cm²) for 3 hours to cause isomerization.
• STM image was acquired using constant current mode (50 pA).
Azobenzene can be lifted with TB “legs”.

- Adding tert-butyl legs to azobenzene results in effective lifting from a surface by progressively decoupling the molecule to the Au surface.
- Photoisomerization was observed only in TTB-azobenzene.
Photoswitching is 4% successful in TTB-azobenzene.

- On Au(111), photoisomerization of TTB-azobenzene was successful on 4% of the sample using a one hour, 90 mW/cm² UV exposure.
UV photoswitching is reversible.

- Reversible switching of a single TTB-azobenzene molecule was shown after two successive exposures to UV light at 90 mW/cm².
Surface-molecule coupling reduces photoswitching effectiveness.

- Interaction with the surface could make the excited electron lifetime shorter than the time it takes to switch molecular configurations.
- Hybridization of azobenzene with the surface may alter the molecular spectrum of azobenzene, resulting in reduced coupling to the UV light.
Theory matches with experiment.

- Ab initio Density functional theory predict molecule conformations
- Siesta code to calculate Local Density of States
- Simulated scanning tunneling microscopy of the trans and cis isomers match quite well with the experimental findings.
Critical analysis of conclusions.

• ... It did not really work very well. Effective switching of only 4% of these molecules after a full hour of UV exposure is not nearly efficient enough for any sort of wide scale usage.

• They propose future work to determine the cause of the drastic reduction in the photoswitching rate on a surface as compared to solution. But they offer no ideas on how to improve photoswitching given these possible causes.

• The process for reversible photoswitching is not well defined in the paper.
This paper was recently cited by:

Azobenzene with methoxy group
On TATA platform on Au surface.

Jacob et. Al, PCCP, 2014
This Experiment is a Combination of two Previous Experiments

Azobenzene in solution manipulated with light
Single-Molecule Optomechanical Cycle

Azobenzene on gold manipulated with STM
Manipulation of azobenzene molecules on Au(111) using scanning tunneling microscopy
The placement of the TTB-azobenzene near the gold atoms could prevent many of the state transitions (called **steric hindrance**). However, the authors claim that this is not a major cause of the low success rate.

This claim is mostly supported by the results of a previous paper\(^3\), but we suspect that the reference paper’s experiment is too different for this conclusion to be drawn.

Questions?