Topological Quantization in Units of the Fine Structure Constant

Tianhe Li, Thomas Johnson, Matthaios Karydas, Davneet Kaur

Topological Quantization in Units of the Fine Structure Constant

Joseph Maciejko,1,2 Xiao-Liang Qi,3,1,2 H. Dennis Drew,4 and Shou-Cheng Zhang1,2

1Department of Physics, Stanford University, Stanford, California 94305, USA
2Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
3Microsoft Research, Station Q, Ellings Hall, University of California, Santa Barbara, California 93106, USA
4Center for Nanophysics and Advanced Materials, Department of Physics, University of Maryland, College Park, Maryland 20742, USA
(Received 16 April 2010; published 12 October 2010)

Fundamental topological phenomena in condensed matter physics are associated with a quantized electromagnetic response in units of fundamental constants. Recently, it has been predicted theoretically that the time-reversal invariant topological insulator in three dimensions exhibits a topological magneto-electric effect quantized in units of the fine structure constant $\alpha = e^2/hc$. In this Letter, we propose an optical experiment to directly measure this topological quantization phenomenon, independent of material details. Our proposal also provides a way to measure the half-quantized Hall conductances on the two surfaces of the topological insulator independently of each other.
Outline

- Introduction and Background
- Proposed Experiment
- Critique
- Citation Analysis
Topological Quantization in Condensed Matter Systems

- **Superconductor (SC):**
 Magnetic flux is quantized in the units of flux quantum \(\phi_0 = \frac{\hbar}{2e} \)

- **Quantum Hall effect (QHE):**
 Hall conductance is quantized in the units of conductance quantum \(G_0 = \frac{e^2}{h} \)

- **Topological magnetoelectric effect (TME):**
 A quantized coefficient in the units of fine structure constant \(\alpha = \frac{e^2}{hc} \)

Provide the most precise measurement of fundamental physical constants \(e, h \) and \(c \)
Topological Magnetoelectric Effect (TME)

For the time-reversal (T) invariant topological insulator (TI), the effective Lagrangian is

$$\mathcal{L} = \frac{1}{8\pi} \left(\varepsilon E^2 - \frac{1}{\mu} B^2 \right) + \frac{\theta}{2\pi} \frac{\alpha}{2\pi} E \cdot B,$$

Under T:

- $B \rightarrow -B$
- $E \rightarrow E$

Described the topological magnetoelectric effect

The system is invariant under shifts of θ by any multiple of 2π

The only allowed value of θ by time reversal symmetry is 0 or π

For topological insulators, $\theta=\pi$; trivial insulators, $\theta=0$.
Faraday Effect vs. Kerr Effect

The polarization of light is rotated when light is transmitted through (Faraday) or reflected from (Kerr) magnetized materials.
Purpose of the Paper

- Provide an optical experiment to measure the topological magnetoelectric effect

How?

- Exploit the Faraday & Kerr effects
- Measure Kerr and Faraday Angles (easy)
- Deduce the quantization of the parameter θ from the measured angles

\[
\mathcal{L} = \frac{1}{8\pi} \left(\varepsilon E^2 - \frac{1}{\mu} B^2 \right) + \frac{\theta}{2\pi} \frac{\alpha}{2\pi} E \cdot B,
\]

\[\alpha = e^2 / \hbar c.\]
Experimental Setup

1. A film of TI (topological insulator) of thickness ℓ and parameter θ

2. A topologically trivial substrate with parameter $\theta_{\text{subs}} = 2p\pi$ with $p \in \mathbb{Z}$

3. A magnetic field is applied in the z direction in order to have the Faraday-Kerr effects
Kerr and Faraday Angles

- **Incident Monochromatic Light**:
 \[E_{in} = E_{in} \hat{x}, \]

- **Reflected Light**:
 \[E_r = E_r^x (-\hat{x}) + E_r^y \hat{y} \]
 - Kerr Angle:
 \[\tan \theta_K = E_r^y / E_r^x \]

- **Transmitted Light**:
 \[E_t = E_t^x \hat{x} + E_t^y \hat{y} \]
 - Faraday Angle:
 \[\tan \theta_F = E_t^y / E_t^x \]
What parameters determine the rotation of the light polarization?

- Generally the Kerr and Faraday angles will depend on many parameters (dielectric constants of materials, length, frequency of light, multiple reflections, θ, θ_{subs})

- It seems dubious that we could extract the exact quantization of the TME from just the Kerr/Faraday angles

- But the paper suggests a trick that simplifies the expressions - Measure the angles at reflectivity minima and maxima (simplifies the expressions significantly)
Reflectivity minima

- Find specific frequency so that we have minimum reflectivity $R \equiv |E_r|^2/|E_{in}|^2$

- Equation between Faraday and Kerr angles:

$$\frac{\cot \theta'_F + \cot \theta'_K}{1 + \cot^2 \theta'_F} = \alpha p, \quad p \in \mathbb{Z}. \quad \alpha = e^2/\hbar c.$$ (Independent on other properties of the materials)
Reflectivity maxima

- ω is now tuned to a reflectivity maxima
- Kerr and Faraday angles - more complicated formulas

\[
\begin{align*}
\tan \theta_F'' & = \frac{2\alpha \left(p - \frac{\theta}{2\pi} + Y_3 \frac{\theta}{2\pi} \right)}{Y_3 + Y_2^2 - 4\alpha^2 \frac{\theta}{2\pi} \left(p - \frac{\theta}{2\pi} \right)}, \\
\tan \theta_K'' & = \frac{4\alpha \left[Y_2^2 \left(p - \frac{\theta}{2\pi} \right) - \tilde{Y}_3^2 \frac{\theta}{2\pi} \right]}{\tilde{Y}_3^2 - Y_2^4 + 4\alpha^2 \left[2Y_2^2 \frac{\theta}{2\pi} \left(p - \frac{\theta}{2\pi} \right) - \tilde{Y}_3^2 \left(\frac{\theta}{2\pi} \right)^2 \right]}, \\
\tilde{Y}_3^2 & = Y_3^2 + 4\alpha^2 \left(p - \frac{\theta}{2\pi} \right)^2
\end{align*}
\]

$Y_i \equiv \sqrt{\varepsilon_i/\mu_i}$
Universal Function

- Use previous formulas to find an equation of the form:

\[f(\theta_K', \theta_F', \theta_K'', \theta_F''; p, \theta) = 0 \]

- \(f \) does not depend explicitly on any material parameter \(\varepsilon_i, \mu_i \)

- We can find the zero crossing \(f(\theta) = 0 \)

- Hence find the parameter \(\theta \)

- Demonstrate the quantization of the TME effect in the TI bulk by verifying it is always 0 or \(\pi \)!
Summary

- Authors propose an optical experiment to directly measure the topological quantization phenomenon.

- By considering both the Kerr and Faraday effects, the authors derive the universal function f, which is independent of material parameters and can be used to determine θ.
Critique

● Is the experiment feasible?
 ○ Theory only applies when $w << E_g / h$.
 ○ To achieve maximum or minimum reflectivity ω or the thickness of the TI film must be changed continuously.
 ○ Samples do not yet have sufficient quality to yield strongly developed Quantum Hall effects.
 ○ This paper neglects reflection from the substrate-vacuum boundary.
Impact of the paper

- This paper has been cited 88 times.
- The TME effect has yet to be observed.
 - Considers light at oblique incidence
 - Considers both thin and thick films
 - Examines possible experimental difficulties
Thank you!