Quantized electric multipole insulators

Presented by Mark Hirsbrunner, Weizhan Jia, Spencer Johnson, and Abid Khan
Department of Physics – University of Illinois at Urbana-Champaign
PHYS 596, December 15, 2017
Topological phases of matter give rise to quantized physical quantities

- Examples are
 - Charge polarization in crystals (1D) \(P_1 = -\frac{e}{2\pi} \int_{\text{BZ}} \text{Tr}[A] \)
 - Hall conductance (2D) \(\sigma_{xy} = -\frac{e^2}{2\pi \hbar} \int_{\text{BZ}} \text{Tr}[dA + iA \wedge A] \)
 - Magnetoelectric polarizability (3D) \(P_3 = -\frac{e^2}{4\pi \hbar} \int_{\text{BZ}} \text{Tr}[A \wedge dA + \frac{2i}{3} A \wedge A \wedge A] \)

- \(A \) is the Berry phase vector potential
- \(\sigma_{xy} \) and \(P_3 \) are natural mathematical extensions of the \(P_1 \) Berry phase expression
There is no generalization of the Berry phase expression for quantized polarization to higher electric multipole moments.

In the classical, continuous limit, multipole moments are:

- **Dipole**: \(\mathbf{p}_i = \int d^3 r \rho(r) r_i \)
- **Quadrupole**: \(q_{ij} = \int d^3 r \rho(r) r_i r_j \)
- **Octupole**: \(o_{ijk} = \int d^3 r \rho(r) r_i r_j r_k \)

Goal: construct crystalline insulator models exhibiting quantized quadrupole and octupole moments.

Bulk quadrupole (A) and octupole (B) moments and the induced moments: surface quadrupoles, edge polarization, corner charges.
The minimal components for a quadrupole insulator are 4 (2 occupied) bands and reflection symmetries M_x, M_y

- γ, λ are hopping parameters
- Complex phases emulate flux quanta piercing each plaquette
- Topological: $|\gamma/\lambda| < 1$
 - Quantized edge polarization
 - $P = \pm e/2$
 - Quantized corner charge
 - $Q = \pm e/2$
- Trivial: $|\gamma/\lambda| > 1$
 - No P or Q

Numerical simulations confirm quantized polarization and corner charges

- Corner states located at boundary of the boundary
- Exponential decay and sudden disappearance indicate topological origin
- Edge polarization also quantized, but there is no nice picture

Berry Phases in Quantum Mechanics

- Movement along curved paths can result in an acquired (geometric) phase

- Berry Phase θ : QM geometric phase
 - $e^{-i\theta} = \langle u_N | u_{N-1} \rangle \langle u_{N-1} | u_{N-2} \rangle \cdots \langle u_2 | u_1 \rangle \langle u_1 | u_0 \rangle$
 - $|u_N\rangle$ is the orbital wavefunction

- Crystal momentum space is a torus, allowing nontrivial loops

- Berry phase is equivalent to location of electrons in the unit cell (polarization) Zak (1989)

- How to generalize to multiple bands (quadrupole/octupole moments)?
Wilson Loops are a generalization of the Berry phase integral in multiple band systems

• Wilson loops over 2D energy bands give 1D bands of Wannier centers (electron positions)

• Wilson loops on 1D Wannier bands give polarizations of each Wannier center

• Each electron contributes opposite polarizations

• Quantized as 0 or $\pm e/2$

Benalcazar, Bernevig, Hughes, Science, 357(6346), (2017).
Cold atoms in optical lattices could realize a quantized quadrupole moment

- A 2D superlattice is created using orthogonal standing optical waves
- X-hopping inhibited with a magnetic gradient
- X-hopping is restored with a complex phase via laser beams
- This phase mimics a π flux per plaquette

Benalcazar, Bernevig, Hughes, Science, 357(6346), (2017).
Bragg transitions between plane-wave BEC states can also model the quadrupole.

- Local atomic orbitals -> BEC planewaves
- Hopping -> 2-photon transitions
- Acousto-optic modulators control hopping amplitude and phase
 - Allows effective flux per plaquette
- Has only been achieved in 1D so far

Recent advancements in photonics allows this model to be realized with laser etched waveguides

- Model can be replicated with arrays of parallel waveguides
- Orbitals -> Waveguides
- Hopping -> Evanescent Tunneling
- New negative couplings allow complex hopping
- Topology can be confirmed by illuminating a corner of the lattice
This paper is of extremely high quality overall

• Good:
 • The paper is reasonably accessible
 • The figures are very illustrative and aid in understanding
 • The work represents a significant advancement in understanding of topology and provides a new framework for calculating invariants (nested Wilson loops)
 • The predictions have been verified in multiple experiments
 • arXiv:1708.03647 (topoelectrical circuit)
 • arXiv:1710.03231 (microwave circuit)

• Bad
 • The supplement is enormous compared to the core paper, but that is nearly unavoidable
Citation Analysis
Summary

• Authors wanted to extend the quantum theory of polarization to higher multiple moments

• Designed Hamiltonians demonstrating quantized quadrupole and octupole moments

• Discovered new topological paradigm (nested Wilson loops)

• Provided experimental proposals for physical realizations of quantized quadrupole insulators