Observation of Gravitational Waves from a Binary Black Hole Merger

B. P. Abbott, et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 116, 061102 (2016), arXiv: 1602.03837.

Alexander Beach, Bora Basa, Carina Baker, Shraddha Agrawal

ILLINOIS

- Gravitational waves - Einstein's Equation
- Gravitational waves - Einstein's Equation
- The (strong) principle of equivalence implies a correspondence between spacetime geometry and gravity: Gravity~ Spacetime curvature due to matter
- Gravitational waves - Einstein's Equation
- The (strong) principle of equivalence implies a correspondence between spacetime geometry and gravity: Gravity~ Spacetime curvature due to matter

Einstein's Equation

Geometrically, spacetime is the data ($M, g_{\mu \nu}$) with causal constraints (Lorentzian manifold). It is dynamical in the sense that $g_{\mu \nu}$ obeys the field equation

$$
R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} \operatorname{Tr}_{g} R_{\mu \nu}+g_{\mu \nu} \Lambda=8 \pi T_{\mu \nu},
$$

corresponding to the action with minimal scalar curvature.

- Gravitational waves - Einstein's Equation
- The (strong) principle of equivalence implies a correspondence between spacetime geometry and gravity: Gravity~ Spacetime curvature due to matter

Einstein's Equation

Geometrically, spacetime is the data ($M, g_{\mu \nu}$) with causal constraints (Lorentzian manifold). It is dynamical in the sense that $g_{\mu \nu}$ obeys the field equation

$$
R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} \operatorname{Tr}_{g} R_{\mu \nu}+g_{\mu \nu} \Lambda=8 \pi T_{\mu \nu},
$$

corresponding to the action with minimal scalar curvature.

- The solutions of Einstein's equations correspond to the possible configurations of the Universe at large length scales.
- Gravitational waves - Einstein's Equation
- Gravitational waves - Einstein's Equation
- The field equations are coupled second-order PDEs.
- Gravitational waves - Einstein's Equation
- The field equations are coupled second-order PDEs.
- Weak gravity expansion: $g_{\mu \nu} \sim \eta_{\mu \nu}+\epsilon h_{\mu \nu}$.
- Gravitational waves - Einstein's Equation
- The field equations are coupled second-order PDEs.
- Weak gravity expansion: $g_{\mu \nu} \sim \eta_{\mu \nu}+\epsilon h_{\mu \nu}$.
- At first order in ϵ the field equations are linear:

$$
\partial^{2} \bar{h}_{\mu \nu}-2 \partial_{(\mu} \partial^{\rho} \bar{h}_{\rho \nu)}+\eta_{\mu \nu} \partial^{\sigma} \partial^{\rho} \bar{h}_{\rho \sigma}=-16 \pi T_{\mu \nu}
$$

where we use trace-reversed metric perturbation, $\bar{h}_{\mu \nu} \equiv h_{\mu \nu}-\frac{1}{2} h \eta_{\mu \nu}$.

- Gravitational waves - Einstein's Equation
- The field equations are coupled second-order PDEs.
- Weak gravity expansion: $g_{\mu \nu} \sim \eta_{\mu \nu}+\epsilon h_{\mu \nu}$.
- At first order in ϵ the field equations are linear:

$$
\partial^{2} \bar{h}_{\mu \nu}-2 \partial_{(\mu} \partial^{\rho} \bar{h}_{\rho \nu)}+\eta_{\mu \nu} \partial^{\sigma} \partial^{\rho} \bar{h}_{\rho \sigma}=-16 \pi T_{\mu \nu}
$$

where we use trace-reversed metric perturbation, $\bar{h}_{\mu \nu} \equiv h_{\mu \nu}-\frac{1}{2} h \eta_{\mu \nu}$.

- With the gauge fixing condition $\partial^{\mu} \bar{h}_{\mu \nu}=0$,

$$
\partial^{2} \bar{h}_{\mu \nu}=-16 \pi T_{\mu \nu}
$$

- Gravitational waves - Einstein's Equation
- The field equations are coupled second-order PDEs.
- Weak gravity expansion: $g_{\mu \nu} \sim \eta_{\mu \nu}+\epsilon h_{\mu \nu}$.
- At first order in ϵ the field equations are linear:

$$
\partial^{2} \bar{h}_{\mu \nu}-2 \partial_{(\mu} \partial^{\rho} \bar{h}_{\rho \nu)}+\eta_{\mu \nu} \partial^{\sigma} \partial^{\rho} \bar{h}_{\rho \sigma}=-16 \pi T_{\mu \nu}
$$

where we use trace-reversed metric perturbation, $\bar{h}_{\mu \nu} \equiv h_{\mu \nu}-\frac{1}{2} h \eta_{\mu \nu}$.

- With the gauge fixing condition $\partial^{\mu} \bar{h}_{\mu \nu}=0$,

$$
\partial^{2} \bar{h}_{\mu \nu}=-16 \pi T_{\mu \nu}
$$

- A small metric perturbation is a gravitational wave that propagates at the speed of light!
- Gravitational waves - Einstein's Equation
- The field equations are coupled second-order PDEs.
- Weak gravity expansion: $g_{\mu \nu} \sim \eta_{\mu \nu}+\epsilon h_{\mu \nu}$.
- At first order in ϵ the field equations are linear:

$$
\partial^{2} \bar{h}_{\mu \nu}-2 \partial_{(\mu} \partial^{\rho} \bar{h}_{\rho \nu)}+\eta_{\mu \nu} \partial^{\sigma} \partial^{\rho} \bar{h}_{\rho \sigma}=-16 \pi T_{\mu \nu}
$$

where we use trace-reversed metric perturbation, $\bar{h}_{\mu \nu} \equiv h_{\mu \nu}-\frac{1}{2} h \eta_{\mu \nu}$.

- With the gauge fixing condition $\partial^{\mu} \bar{h}_{\mu \nu}=0$,

$$
\partial^{2} \bar{h}_{\mu \nu}=-16 \pi T_{\mu \nu}
$$

- A small metric perturbation is a gravitational wave that propagates at the speed of light!
- It is generated by accelerating mass just as an electromagnetic vector potential is generated by accelerating charge.
[Tiec and Novak, 2017]
- So a gravitational wave is just a wave in spacetime!
- So a gravitational wave is just a wave in spacetime!
- Predicted by Einstein in 1916, but the amplitude is so small that "detecting them is like measuring the distance to a star ten light-years away with a precision equivalent to the diameter of a strand of hair"
-Royal Swedish Academy of Sciences
- Gravitational Waves - First Experiments
- Gravitational Waves - First Experiments
- Joseph Weber performed first experiment to detect gravitational waves in 1966-1967
- 'Weber bars' were designed to detect gravitational waves
- Gravitational Waves - First Experiments
- Joseph Weber performed first experiment to detect gravitational waves in 1966-1967
- 'Weber bars' were designed to detect gravitational waves
- In the 1970's proposals for laser based interferometers were drafted
- In the late 90 's the first sets of interferometers were built, including TAMA 300, GEO 600, LIGO, and Virgo
- Experiments to Detect Gravitational Waves 50 Years Later
- Experiments to Detect Gravitational Waves 50 Years Later
- In 1974, at Arecibo Radio Observatory, Russell Hulse and Joseph Taylor Jr. discovered the binary pulsar system, PSR B1913+16 \quad -
- Experiments to Detect Gravitational Waves 50 Years Later
- In 1974, at Arecibo Radio Observatory, Russell Hulse and Joseph Taylor Jr. discovered the binary pulsar system, PSR B1913+16 \quad -
- The orbital period should be very regular, but was observed to decay
- Experiments to Detect Gravitational Waves 50 Years Later
- In 1974, at Arecibo Radio Observatory, Russell Hulse and Joseph Taylor Jr. discovered the binary pulsar system, PSR B1913+16 \quad -
- The orbital period should be very regular, but was observed to decay
- Nobel prize in 1993
- Experiments to Detect Gravitational Waves 50 Years Later
- In 1974, at Arecibo Radio Observatory, Russell Hulse and Joseph Taylor Jr. discovered the binary pulsar system, PSR B1913+16 \quad -
- The orbital period should be very regular, but was observed to decay
- Nobel prize in 1993
- Ratio of observed to predicted orbital decay rate considering energy lost to gravitational waves is 0.997 ± 0.002
[Weisberg et al., 2010]
- In 2016 this was updated to 0.9983 ± 0.0016
[Weisberg and Huang, 2016]

- BICEP2 - Gravitational Waves?

- March 2014, BICEP 2 reported detection of B-mode primordial gravitational waves

- BICEP2 - Gravitational Waves?

- It was just cosmic dust

BICEP2 B-mode signal

- LIGO - Laser Interferometer Gravitational-Wave Observatory
- LIGO - Laser Interferometer Gravitational-Wave Observatory
- Built in 2002 as a joint project between MIT and Caltech, and funded by NSF
- LIGO - Laser Interferometer Gravitational-Wave Observatory
- Built in 2002 as a joint project between MIT and Caltech, and funded by NSF
- Pair of interferometers in Hanford, Washington, and Livingston, Louisiana
- LIGO - Laser Interferometer Gravitational-Wave Observatory
- Built in 2002 as a joint project between MIT and Caltech, and funded by NSF
- Pair of interferometers in Hanford, Washington, and Livingston, Louisiana
- Each arm is 4 km long
- LIGO - Laser Interferometer Gravitational-Wave Observatory
- Built in 2002 as a joint project between MIT and Caltech, and funded by NSF
- Pair of interferometers in Hanford, Washington, and Livingston, Louisiana
- Each arm is 4 km long
- Detect changes in length less of a ten-thousandth the charge diameter of a proton

Sensitivity of Detector

L1

Livingston, LA

H1

Hanford, WA

Group 1

- September 14, 2015 Advanced LIGO detected a gravitational wave event

- First detection of a black hole merger event, and first direct observation of gravitational waves
- September 14, 2015 Advanced LIGO detected a gravitational wave event

- First detection of a black hole merger event, and first direct observation of gravitational waves

- Collision Parameters
- Redshift of 0.09
- Primary black hole mass $36 M_{\odot}$
- Spin 0.32
- Secondary black hole mass of $29 M_{\odot}$
- Spin 0.44
- Final black hole mass of $62 M_{\odot}$
- Spin 0.67
- Collision Waveform
- Model merger event using combination of analytic and numerical techniques -

- Raw LIGO Data

- Raw LIGO Data

- How do they know this was 2 black holes?

- Binary Coalescence Search
- Binary Coalescence Search
- Codes like Spectral Einstein Code (SpEC) use multiple techniques to generate waveform templates
- Masses and spins of the black holes are parameter space
- ~250000 templates generated
- Binary Coalescence Search
- Codes like Spectral Einstein Code (SpEC) use multiple techniques to generate waveform templates
- Masses and spins of the black holes are parameter space
- ~250000 templates generated
- Identify signal to noise ratio, $\rho(t)$, for the generated and observed signal, and for every template
- Binary Coalescence Search
- Codes like Spectral Einstein Code (SpEC) use multiple techniques to generate waveform templates
- Masses and spins of the black holes are parameter space
- ~250000 templates generated
- Identify signal to noise ratio, $\rho(t)$, for the generated and observed signal, and for every template
- Every maximized $\rho(t)$, there is a test characteristic, χ^{2}, to compare with predicted waveform

- Binary Coalescence Search

- Codes like Spectral Einstein Code (SpEC) use multiple techniques to generate waveform templates
- Masses and spins of the black holes are parameter space
- ~250000 templates generated
- Identify signal to noise ratio, $\rho(t)$, for the generated and observed signal, and for every template
- Every maximized $\rho(t)$, there is a test characteristic, χ^{2}, to compare with predicted waveform
- For remaining signals, the background is re-estimated without the contribution of the signal
- Generic Transient Search
- Generic Transient Search
- Devise a searching method, using a detection statistic

$$
\eta_{c}=\sqrt{\frac{2 E_{c}}{\left(1+\frac{E_{n}}{E_{c}}\right)}}
$$

- Quantify signal to noise ratio
- Generic Transient Search
- Devise a searching method, using a detection statistic

$$
\eta_{c}=\sqrt{\frac{2 E_{c}}{\left(1+\frac{E_{n}}{E_{c}}\right)}}
$$

- Quantify signal to noise ratio
- Create a list of possible events with high signal to noise ratio
- Generic Transient Search
- Devise a searching method, using a detection statistic

$$
\eta_{c}=\sqrt{\frac{2 E_{c}}{\left(1+\frac{E_{n}}{E_{c}}\right)}}
$$

- Quantify signal to noise ratio
- Create a list of possible events with high signal to noise ratio
- Filter events with separation larger than 10 ms
- Generic Transient Search
- Devise a searching method, using a detection statistic

$$
\eta_{c}=\sqrt{\frac{2 E_{c}}{\left(1+\frac{E_{n}}{E_{c}}\right)}}
$$

- Quantify signal to noise ratio
- Create a list of possible events with high signal to noise ratio
- Filter events with separation larger than 10 ms
- Rank remaining candidate events
- Generic Transient Search
- Devise a searching method, using a detection statistic

$$
\eta_{c}=\sqrt{\frac{2 E_{c}}{\left(1+\frac{E_{n}}{E_{c}}\right)}}
$$

- Quantify signal to noise ratio
- Create a list of possible events with high signal to noise ratio
- Filter events with separation larger than 10 ms
- Rank remaining candidate events
- Determine background noise
- Statistical Analysis - Numerically Fitting Data
- Statistical Analysis - Numerically Fitting Data
- Matched filter analysis of a suspected gravitational wave signal at H 1 and L1
- $6.9_{-0.4}^{+0.5} \mathrm{~ms}$ from L 1 to H 1
- Statistical Analysis - Numerically Fitting Data
- Matched filter analysis of a suspected gravitational wave signal at H1 and L1
- $6.9_{-0.4}^{+0.5} \mathrm{~ms}$ from L 1 to H 1
- Reconstructed waveforms using wavelet-transforms, and numerical relativity simulations
- Statistical Analysis - Numerically Fitting Data
- Matched filter analysis of a suspected gravitational wave signal at H 1 and L1
- $6.9_{-0.4}^{+0.5} \mathrm{~ms}$ from L 1 to H 1
- Reconstructed waveforms using wavelet-transforms, and numerical relativity simulations

- Statistical Analysis - Time-Frequency
- Time-frequency representation shows same pattern at both sites
- Determine power above baseline detector noise
- Statistical Analysis - Time-Frequency
- Time-frequency representation shows same pattern at both sites
- Determine power above baseline detector noise
- The detectors have a non stationary non gaussian noise
- Time shift technique - the time of one detector's data is shifted by an amount greater than the intersite propagation time
- Uncorrelated noise between two detectors is filtered out
- Statistical Analysis - Time-Frequency
- Time-frequency representation shows same pattern at both sites
- Determine power above baseline detector noise
- The detectors have a non stationary non gaussian noise
- Time shift technique - the time of one detector's data is shifted by an amount greater than the intersite propagation time
- Uncorrelated noise between two detectors is filtered out

- Interferometer Analysis - How To Measure a Strain of 10^{-21}
- Interferometer Analysis - How To Measure a Strain of 10^{-21}
- Because of the small phase shift, resonant optical cavities multiply difference by a factor of 300 , and the 20 W laser is amplified to 100 kW
- Interferometer Analysis - How To Measure a Strain of 10^{-21}
- Because of the small phase shift, resonant optical cavities multiply difference by a factor of 300 , and the 20 W laser is amplified to 100 kW
- Test masses are suspended in a quadruple pendulum system
- Interferometer Analysis - How To Measure a Strain of 10^{-21}
- Because of the small phase shift, resonant optical cavities multiply difference by a factor of 300 , and the 20 W laser is amplified to 100 kW
- Test masses are suspended in a quadruple pendulum system
- 40 kg fused silica substrates with low-loss dielectric optical coatings reduce thermal noise
- Interferometer Analysis - How To Measure a Strain of 10^{-21}
- Because of the small phase shift, resonant optical cavities multiply difference by a factor of 300 , and the 20 W laser is amplified to 100 kW
- Test masses are suspended in a quadruple pendulum system
- 40 kg fused silica substrates with low-loss dielectric optical coatings reduce thermal noise
- Each site has seismometers, accelerometers, magnetometers, microphones, radio receivers, weather sensors, ac power line monitors, and cosmic ray detectors
- Further Developments
- Nobel Prize in 2017, Rainer Weiss, Kip Thorne and Barry C. Barish
- Further Developments
- Nobel Prize in 2017, Rainer Weiss, Kip Thorne and Barry C. Barish
- Paper has been cited 2904 times
- Further Developments
- Nobel Prize in 2017, Rainer Weiss, Kip Thorne and Barry C. Barish
- Paper has been cited 2904 times
- August 17, 2017 LIGO detected first merger of 2 neutron stars
- Further Developments
- Nobel Prize in 2017, Rainer Weiss, Kip Thorne and Barry C. Barish
- Paper has been cited 2904 times
- August 17, 2017 LIGO detected first merger of 2 neutron stars
- Einstein@Home
- Future Plans
- Upgrades to LIGO to reduce sensitivity to noise
- Future Plans
- Upgrades to LIGO to reduce sensitivity to noise
- Improved simulations
- More extreme/exotic systems
- Expanded parameter space
- Faster and more accurate numerical methods
- Future Plans
- Upgrades to LIGO to reduce sensitivity to noise
- Improved simulations
- More extreme/exotic systems
- Expanded parameter space
- Faster and more accurate numerical methods
- Improving the match filtering process
- Better detection statistics
- Expecting to see much higher frequency of events in the future

- Future Plans
- In 2034 the European Space Agency plans to begin launching a Laser Interferometer Space Antenna (LISA)
- Vacuum of space is better than vacuum achievable in LIGO
- Almost no noise from Earth
- The interferometer arms can be much larger than on Earth

- Future Plans
- Fermilab E-990 - 'Holometer'
- Most sensitive interferometer in the world
- Meant to detect change in space-time due to quantum fluctuations
- . https://holometer.fnal.gov/faq.html\#logo
- Who Disagrees?
-Who Disagrees?
- Andrew Jackson et al. at the Niels Bohr Institute have pre-published on arXiv, finding correlation in the detector noise
- This correlation is maximised for both the signal and the noise, using the 6.9 ms time lag of the LIGO paper
-Who Disagrees?
- Andrew Jackson et al. at the Niels Bohr Institute have pre-published on arXiv, finding correlation in the detector noise
- This correlation is maximised for both the signal and the noise, using the 6.9 ms time lag of the LIGO paper
- This paper is excellent in all other respects
- Well written and unambiguous
- Careful and thorough
- Great example of international collaboration
- Summary
- Summary
- 1916: Gravitational waves predicted by Einstein, black hole solutions published by Schwarzschild
- Summary
- 1916: Gravitational waves predicted by Einstein, black hole solutions published by Schwarzschild
- 1970s: Existence of gravitational waves indirectly demonstrated (binary pulsar merger)
- Summary
- 1916: Gravitational waves predicted by Einstein, black hole solutions published by Schwarzschild
- 1970s: Existence of gravitational waves indirectly demonstrated (binary pulsar merger)
- Advanced LIGO first of a wave of more sensitive gravitational wave detectors
- Summary
- 1916: Gravitational waves predicted by Einstein, black hole solutions published by Schwarzschild
- 1970s: Existence of gravitational waves indirectly demonstrated (binary pulsar merger)
- Advanced LIGO first of a wave of more sensitive gravitational wave detectors
- Uses two Michelson laser interferometers; change in length of arms as gravitational wave passes through causes interference
- Summary
- 1916: Gravitational waves predicted by Einstein, black hole solutions published by Schwarzschild
- 1970s: Existence of gravitational waves indirectly demonstrated (binary pulsar merger)
- Advanced LIGO first of a wave of more sensitive gravitational wave detectors
- Uses two Michelson laser interferometers; change in length of arms as gravitational wave passes through causes interference
- Carefully isolated from environmental noise
- Summary
- 2015: First direct detection of gravitational waves and first observation of binary black hole merger!
- Summary
- 2015: First direct detection of gravitational waves and first observation of binary black hole merger!
- Basic waveform features indicate it came from merging black holes
- Summary
- 2015: First direct detection of gravitational waves and first observation of binary black hole merger!
- Basic waveform features indicate it came from merging black holes
- Detected by two different types of searches:
- Generic transient search doesn't look for a specific waveform model, just for excess strain. Found the signal with false alarm probability of 4.4σ.

- Summary

- 2015: First direct detection of gravitational waves and first observation of binary black hole merger!
- Basic waveform features indicate it came from merging black holes
- Detected by two different types of searches:
- Generic transient search doesn't look for a specific waveform model, just for excess strain. Found the signal with false alarm probability of 4.4σ.
- Binary coalescence search looks for gravitational waves from binary systems in a specific mass range. Found the signal with false alarm probability of 5.1σ.

- Summary

- 2015: First direct detection of gravitational waves and first observation of binary black hole merger!
- Basic waveform features indicate it came from merging black holes
- Detected by two different types of searches:
- Generic transient search doesn't look for a specific waveform model, just for excess strain. Found the signal with false alarm probability of 4.4σ.
- Binary coalescence search looks for gravitational waves from binary systems in a specific mass range. Found the signal with false alarm probability of 5.1σ.
- Numerical models: mass and spin determined independently from the early stage and late stage agree.
- Why care?
- Last piece of GR
- New kind of astronomy
Amen riman
Atictank ${ }^{2}$
10,
Ameme
and
2rata

fomen
sint
socm
s.can
Hut
ance
电

Than
Ren
gns

Romation
$=x \cos x+x$
ns,

modration
$2=2$
2am

On a
电
Preprevem

ancon
en
5
Pomber in

san

antan

Whiting. B. F., Wienser, K. Wilkinon, C., Wilema, P. A. Willams, L, Willame, R. D., Williamen, A. R., Wilis, J. L, Willhe, B., Wimme, M. H.

通
thos. Rev. Lett 1166.061102 .

weat 1 mathorn
Relativiatic mesaurementsx from tirining tha binery pulear par b1913 +16
Relativivitic meanurements from timing
Fir Waiberg, $1 . \mathrm{M}$. Nisas, D. 1 , and Tarlor, 1. H. (2010).
Timing manaurements of the relativiztic binary pular part b1913 +16 .

