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Introduction and Motivation



Weyl Semimetals and Dirac’s Equation

The Hamiltonian of Dirac’s equation is

H =

(
(−i∇) · σ M

M −(−i∇) · σ

)
.

Features:

• four-band massive fermions

• time-reversal symmetry (TR) and parity (or inversion symmetry)

• Lorentz covariant
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Weyl Semimetals from Weyl’s equation

Weyl’s equation (massless Dirac fermions):

H =

 (≡Hs=+1)

(−i∇) · σ
(≡Hs=−1)

− (−i∇) · σ

 .

• s for chirality: +(−) for right

(left)-handed

• zero-energy points: Weyl nodes

• Hs=± does not couple with each other:

∂µj
µ
s = 0?!

Breaking TR and inversion symmetry?

Hs = (−is∇− sλ) · σ + λ0.
Energy spectrum, Cortijo et al.

(2015).

Weyl nodes, Weyl semimetals.
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Why are Weyl Semimetals Interesting?

• Protected by

topology: Berry’s

curvature, monopole

charge . . .

• Novel responses: the

chiral magnetic effect,

the anomalous quantum

Hall effect . . .

• High-energy physics in

condensed matters:

chiral anomaly,

gravitational anomaly,

Riemann-Cartan

geometry . . .

Monopoles in Weyl semimetals and Fermi arcs.1

1Balents (2011)
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Chiral Anomaly ∂µj
µ
s 6= 0 from the Lowest Landau Level

• turn on the

magnetic fields:

the chiral lowest

Landau level

• turn on the

electric fields

• chiral anomaly:

∂µj
µ
s = s

4π2 E · B
s-Weyl fermions

are not

independent.

Anomaly!

Landau’s level of Weyl’s equation Burkov (2016)
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Chiral Anomaly from Berry’s Curvature

• Monopole charge in momentum space:

∇ ·Ωs = 2πsδ3(p), Ωs , magnetic field

in momentum space for s-Weyl

fermions

• Breakdown of Liouville’s Theorem due

to monopole charge!

∂Ds

∂t
= {Ds ,H}︸ ︷︷ ︸

Poisson Bracket

+ (∇ ·Ωs)︸ ︷︷ ︸
Monopole

E · B,

where Ds is the density of states.

Chiral anomaly!

Berry connection in Weyl

semimetals (in momentum

space).1

1Lu and Shen (2017) 6
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The Paper



Simple Multilayer Weyl Semimetal Model

• Purpose: Creating a simple

Weyl semimetal model

• Alternating layers of a

topological insulator (TI) and

an ordinary insulator

• Two Weyl fermions at same

point in momentum space,

topologically unstable

• Add magnetic impurities to

each TI layer

• Spin splitting of surface states,

separates Dirac nodes

• Stable Weyl semimetal phase

Drawing of proposed multilayer

structure. Arrow shows magnetization

direction.1

1Burkov and Balents (2011)
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Model Hamiltonian and Phase

Diagrams



Model Hamiltonian

The heterostructure Hamiltonian can be written as (~ = 1):

H =
∑
k⊥,i,j

[
vF τ

z (ẑ × σ) · k⊥δi,j + mσzδi,j + ∆Sτ
xδi,j

+
1

2
∆Dτ

+δj,i+1 +
1

2
∆Dτ

−δj,i−1

]
c†k⊥ick⊥j .

• The first term describes the two (top and bottom) surface states of

an individual TI layer; vF is the Fermi velocity, σ (τ ) the triplet of

Pauli matrices acting on the real (psuedo-) spin degree of freedom,

and i and j label TI layers.

• The second term describes exchange spin splitting of the surface

states.

• The remaining terms describe tunnelling between top and bottom

surfaces within the same TI layer.

8
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Phase Diagrams

H =
∑
k⊥,i,j

[
vF τ

z (ẑ × σ) · k⊥δi,j + mσzδi,j + ∆Sτ
xδi,j

1

2
∆Dτ

+δj,i+1 +
1

2
∆Dτ

−δj,i−1

]
c†k⊥ick⊥j .

Phase diagrams when m, ∆S , and ∆D are treated as tunable parameters.
9



Phase Diagrams

H =
∑
k⊥,i,j

[
vF τ

z (ẑ × σ) · k⊥δi,j +����mσzδi,j + ∆Sτ
xδi,j

1

2
∆Dτ

+δj,i+1 +
1

2
∆Dτ

−δj,i−1

]
c†k⊥ick⊥j .

Phase diagram for m = 0 (m

parameter for spin splitting

interaction).

• TI: topological insulator phase.

• Ins: insulator phase.

• ∆S and ∆D parameters

proportional to the potential

barrier in the TI bulk and

insulator, respectively.
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Experimental Realization?



Experimental Observations of Weyl Semimetal

• Fine tuning of m, ∆S , and ∆D

• suitable magnetic impurity concentration and the magnetic impurity

sources

• Suitable TI and insulator

• Suitable spacing within TI and insulator

• Lack of smoking gun evidence

multilayer experimental proposal1

phase diagram of the proposal1

conductivity in units of e2/hd , where

∆D = 0.8∆S
1

1Burkov and Balents (2011)
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Experimental Observations of Weyl Semimetal

• Until 2015, Dai’s group (Weng

et al., PRX, 2015) and Hasan’s

group (Huang et al., Nat.

Commun., 2015) proposed

TaAs class material

• Surface Fermi arc is the

smoking gun

• Angle-Resolved Photoemission

Spectroscopy

Ekin = hν − φ− |EB |

p‖ = ~k‖ =
√

2mEkin sin θ

ARPES geometry (Damascelli et al.,

RMP, 2003)

11
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Experimental Observations of Weyl Semimetal

Ding’s group (Lv et al., Nat. Phys. 2015; Lv et al., PRX, 2015): TaAs

Hasan’s group (Xu et al., Science, 2015): TaAs

Soljai’s group (Lu et al., Science, 2015): photonic crystal

• 12 pairs of Weyl points

• Extended Fermi-arc

TaAs structure1

TaAs Brillouin zone and Weyl points1

Fermi arc and Weyl nodes from ab

initio calculation1

1Yang et al. (2015)

12
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Experimental Observations of Weyl Semimetal

Excellent agreement between arpes measurement and ab initio

calculations

ARPES spectra and ab initio calculation1

Fermi arc: ab initio (left), and experiment (right)1

1Yang et al. (2015)
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Conclusion and Comments



Citations

• High Impact

Paper

• Physics and

Material Science

to Geology and

Biochemistry

 0

 50

 100

 150

 200

 250

2011 2012 2013 2014 2015 2016 2017 2018

C
it
a
ti
o
n
s

Year

Citations versus Time

Plot of citations over time from Web of Science data.
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Conclusion and Comments

• Simple realization of 3D Weyl

semimetal phase

• Only two Dirac nodes, simplest

possible

• Topologically stable edge states

Phase diagram showing Weyl semimetal

phase. This is with magnetic doping.1

1Burkov and Balents (2011)
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The Good/Bad

Good

• Good introduction and

motivation for the research.

• Well laid out explanation with

good flow.

• Provides a physical picture to

understand Weyl semimetals.

Bad

• The internal degree of freedom

in each layer is not considered.

• Not great at defining some of

the parameters used.

• Fine tuning of parameters make

experiments challenging to

realize Weyl semimetal phases.
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Experimental Observations So Far

Material Symmetry Broken Pairs of Weyl Nodes

TaAs, TaP, NbAs, NbP Inversion 12

MoTe2 Inversion 4

WTe2 Inversion 4

LaAlGe Inversion 20

Ta3S2 Inversion 4
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