## Classically verifiable quantum advantage from a computational Bell test

Group 1: Aakash, Henry, Jayana & Preethi

https://doi.org/10.1038/s41567-022-01643-7



#### **Background on the Paper and Authors**

- Published August 1st,
  2022 in *Nature Physics*
- Yao Group at UC
   Berkeley (Physics and EECS)
- Quantum computing and cryptography

ARTICLES

https://doi.org/10.1038/s41567-022-01643-7

#### **OPEN** Classically verifiable quantum advantage from a computational Bell test

Gregory D. Kahanamoku-Meyer<sup>®</sup><sup>1⊠</sup>, Soonwon Choi<sup>1</sup>, Umesh V. Vazirani<sup>2</sup><sup>∞</sup> and Norman Y. Yao<sup>®</sup><sup>1∞</sup>

physics

Check for updates

#### What this paper does: an overview

- 1. This work relies on a class of cryptographic tools called <u>trapdoor claw-free functions</u>
- 2. Introduces independent innovations that improve the efficiency of algorithm implementation
- Combining these results, describes a blueprint for implementing the protocol on Rydberg atom-based quantum devices



Image Source: DALL-E

## **Trapdoor Claw-Free Functions (TCF's)**

- <u>One-way function:</u> Easy to compute, but hard to invert.
- <u>Trapdoor Function</u>: Hard to invert in general, with the knowledge of some secret data (the trapdoor key) inversion becomes easy.
- <u>Claw-Free:</u> has two inputs that map to each output, but it is computationally hard to implement without the trapdoor.

Image sources: DALL-E2, https://en.wikipedia.org/wiki/Trapdoor\_function





#### **Protocol - Round 1**



#### **Protocol - Rounds 2 and 3**



# Previous Works : Pioneers in the use of TCF for quantum cryptography tasks

**Classical Homomorphic Encryption for Quantum Circuits** 

Urmila Mahadev\*

September 14, 2018

https://doi.org/10.1137/18M1231055

- TCF as a verifier of quantum randomness
- Adaptive hardcore bit

A Cryptographic Test of Quantumness and Certifiable Randomness from a Single Quantum Device

Zvika Brakerski<sup>\*</sup> Paul Christiano<sup>†</sup> Urmila Mahadev<sup>‡</sup> Umesh Vazirani<sup>§</sup> Thomas Vidick<sup>¶</sup>

https://doi.org/10.1145/3441309

# Extension of the use of TCFs with adaptive hardcore bit: arbitrary calculations

#### **Classical Verification of Quantum Computations**

Urmila Mahadev\*

September 14, 2018

10.1109/FOCS.2018.00033

#### Random Oracle Model - Non TCF-based proof

Simpler Proofs of Quantumness

Zvika Brakerski Weizmann Institute of Science zvika.brakerski@weizmann.ac.il\*

Umesh Vazirani University of California Berkeley vazirani@cs.berkeley.edu <sup>‡</sup> Venkata Koppula Weizmann Institute of Science venkata.koppula@weizmann.ac.il<sup>†</sup>

Thomas Vidick California Institute of Technology vidick@caltech.edu §

https://doi.org/10.48550/arXiv.2005.04826

https://www.pngwing.com/en/free-png-pvqpw https://www.pngwing.com/en/free-png-yofrv

#### **Interactive Protocol**



#### **Functions for the Protocol**

## Table 1 | Cryptographic constructions for interactive quantum advantage protocols

| Problem                | Trapdoor | Claw-free | Adaptive<br>hardcore bit | Asymptotic<br>complexity<br>(gate count) |
|------------------------|----------|-----------|--------------------------|------------------------------------------|
| LWE <sup>16</sup>      | 1        | 1         | 1                        | n²log²n                                  |
| $x^2 \mod N$           | 1        | 1         | X                        | nlogn                                    |
| Ring-LWE <sup>17</sup> | 1        | 1         | x                        | nlog²n                                   |
| Diffie-Hellman         | 1        | 1         | x                        | n³log²n                                  |
| Shor's algorithm       | _        | _         | _                        | n²logn                                   |

n represents the number of bits in the function's input string. Big-O notation is implied and factors of log logn and smaller are dropped. For references and derivations of the circuit complexities, see Supplementary Information.

#### **Implementation of the Protocol**

Two Key Innovations -

A) Post Selection Scheme - Reduces the Fidelity requirement

A) Measurement Based Circuit - Reduces the Quantum circuit overhead

#### **Post Selection Scheme**

Discard Outputs which are not possible and Try Again



#### Low Fidelity Requirement

Postselection scheme increases a noisy device's probability of passing the test.



#### **Measurement Based Circuit**

Allows direct conversion from

Classical circuit to Quantum with

Zero Overhead



### **Quantum Circuit Implementation**

Quantum advantage can be achieved with

Qubits ~10^3

Gate depth ~10^5

Importantly,

requires Low Circuit Fidelity



#### Natural implementation using Rydberg Atom



#### Natural implementation using Rydberg Atom



## Summary of the paper

- The paper provides a way to experimentally test quantum advantage with current technology
- It does this by using a post selection scheme and a measurement-based circuit
- It also presents a methodology to implement in Rydberg atoms.

### Summary of our analysis

- The paper is currently too inaccessible and requires the reader to be in the field to understand it.
- The paper does not justify why it is important well

#### Impact

- Relatively new paper so there is only one citation
- It is shown that this result is useful in showing proofs of quantumness in challenge-response protocols

#### Depth-efficient proofs of quantumness

Zhenning Liu<sup>1</sup> and Alexandru Gheorghiu<sup>2</sup>

<sup>1</sup>Department of Physics, ETH Zürich, Switzerland <sup>2</sup>Institute for Theoretical Studies, ETH Zürich, Switzerland

A proof of quantumness is a type of challenge-response protocol in which a classical verifier can efficiently certify the *quantum advantage* of an untrusted prover. That is, a quantum prover can correctly answer the verifier's challenges and be accepted, while any polynomial-time classical prover will be rejected with high probability, based on plausible computational assumptions. To answer the verifier's challenges, existing proofs of quantumness typically require the quantum prover to perform a combination of polynomial-size quantum circuits and measurements.

## Thank you!