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What this paper does: an overview

1. This work relies on a class of cryptographic
tools called trapdoor claw-free functions

2. Introduces independent innovations that
improve the efficiency of algorithm
implementation

3. Combining these results, describes a
blueprint for implementing the protocol on
Rydberg atom-based quantum devices
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Trapdoor Claw-Free Functions (TCF’s)

e One-way function: Easy to compute,

but hard to invert.
e Trapdoor Function: Hard to invert in ( f t) = Gen (ln)
general, with the knowledge of some ’f D P

. —>

secret data (the trapdoor key)

inversion becomes easy.

e Claw-Free: has two inputs that map to

each output, but it is computationally
hard to implement without the
trapdoor.
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Protocol - Round 1

Prover (quantum)

2. Generate state X, |x), |f(x)),

3. Measure y register, yielding bitstring y
State is now (|x,) + |x,)), 1Y)y
y register can be discarded

If preimage requested:

6a. Projectively measure x register, yielding x

A

A

Choice

Y

Y

Verifier (classical)

5. Randomly choose to request a preimage
or continue

7a. If x € {x,, x,} retum Accept



Otherwise, continue:
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i Round 2
i 7b. Add one ancilla b; use CNOTs to compute
17+ Xody 1Xohe + 17+ Xy)y, 1X,), Where
r - x is bitwise inner product
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6b. Choose random bitstring r

A

yielding a string d. Discard x, state is now
¥}y €410), 1), 1+), 1)}
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9b. Using r, X,, X,, d, determine |v),
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1+ 11b. Measure ancilla b in the rotated basis

cos(8)10) +sin(§)11) | yielding
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Interactive Protocol

Prover (quantum)

’ '
' Round 1 i
" ' f
- 2. Generate state Z_|x), |f,(x))y "
]
. . . — '
s 3. Measpre y register, yielding bitstring y '
- State is now (|x,) + |x,)), V) ' y
- y register can be discarded ' >
'Yl I I mmmMmmmmmmmmmmmMmMm T T T T T T T _'
) Choice
If preimage requested:
6a. Projectively measure x register, yielding x X >

PR L

Verifier (classical)

1. Sample (f, t) — Gen (17)

4. Using trapdoor t compute x, and x,

5. Randomly choose to request a preimage
or continue

7a. If x € {x,, x,} retum Accept



Functions for the Protocol

Table 1| Cryptographic constructions for interactive quantum

advantage protocols

Problem Trapdoor Claw-free Adaptive Asymptotic
hardcore bit complexity
(gate count)
LWE'® v v v n’log’n
— x?’mod N v v X nlogn

Ring-LWE" v v X nlog?n
Diffie-Hellman v v X n’log®n
Shor's algorithm  — — — n’logn

n represents the number of bits in the function’s input string. Big-© notation is implied and factors
of log logn and smaller are dropped. For references and derivations of the circuit complexities, see

Supplementary Information.



Implementation of the Protocol

‘Two Key Innovations -

A) Post Selection Scheme - Reduces the Fidelity requirement

A) Measurement Based Circuit - Reduces the Quantum circuit overhead



1. Sample (1, 1) — Gen (1)

i 2. Generate state , |x), [f(x)),

3. Measure y register, yielding bitstring y
State is now (1x,) + |X,)), [¥)y:

SEEEEEEEEEEE-y
.‘..-.-.‘.-.

4. Using trapdoor tcompute x, and x,

7a. If x € {x,, x,} retum Accept
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Circuit fidelity, 7




Measurement Based Circuit

Information flow

Allows direct conversion from
O 0000000 Measurements:
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Computational depth, %



foriin[1:n]
for jin[i: n]
for kin[1: m]
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Summary of the paper

e The paper provides a way to experimentally test quantum advantage
with current technology

e It does this by using a post selection scheme and a measurement-based
circuit

e It also presents a methodology to implement in Rydberg atoms.






Depth-efficient proofs of quantumness

Zhenning Liu' and Alexandru Gheorghiu?
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A proof of quantumness is a type of challenge-response protocol in which a classical
verifier can efficiently certify the quantum advantage of an untrusted prover. That
is, a quantum prover can correctly answer the verifier’s challenges and be accepted,
while any polynomial-time classical prover will be rejected with high probability, based
on plausible computational assumptions. To answer the verifier’s challenges, existing
proofs of quantumness typically require the quantum prover to perform a combination
of polynomial-size quantum circuits and measurements.







