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Background: science in 1950s 



Key points: Electromagnetism

● Fields  →    Physical 
quantities.

● The potential → 
mathematical tool to 
obtain the field.

● Solenoid → 
electromagnet formed 
by a helical coil of wire 
whose length is 
substantially greater 
than its diameter

S
Fig. 1 - Solenoid



Key points: Locality in Physics 

F

● An object is influenced 
directly only by its 
immediate surroundings.

● An action at one point to 
have an influence at 
another point, something in 
the space between those 
points must mediate the 
action. Fig. 2 - Force on object-Classical Mechanics



Key points: Quantum Mechanics 

A wave function: mathematical description of 
the quantum state 

Fig. 3 - Schrödinger

● The canonical formalism is necessary → potentials 
cannot be eliminated from the basic equations

● These equations, as well as the physical quantities, 
are all gauge invariant; so that it may seem → the 
potentials have no independent significance



What is the next step?

I ● Study the Electromagnetic 
Potentials in the Quantum 
Mechanics domain: further 
interpretation of the potentials is 
needed in the quantum 
mechanics.

● Are there effects of the 
potentials on charged particles?



What is the article about?

● Classical canonical formalism - Potential needed but EOM has fields.

∂L／∂Ф - ∂ᵦ(∂L／∂(∂ᵦФ)) = 0 (E-L equation)

● QM Canonical formalism necessary - Potential needed but gauge invariant

(A →A+∇ψ, ∅→∅ - მψ/მt)

● No significance of Potential?!
● Does local E and B field contain full information?!
● ψ = ψ₀ e^(-iS/ħ) - Is phase really irrelevant?!



Methods - Hypothetical experiment 1

Fig.-Schematic experiment to demonstrate interference 
with time-dependent scalar potential.
(https://link.aps.org/doi/10.1103/PhysRev.115.485 )
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Fig.-Schematic experiment to demonstrate interference 
with time-dependent scalar potential.
(https://link.aps.org/doi/10.1103/PhysRev.115.485 )

S₁ = e ∫𝜙₁ dt

S₂ = e ∫𝜙₂ dt

ψ₁ = ψ₁⁰ e^(-
iS₁/ħ) 

ψ₂ = ψ₂⁰ e^(-
iS₂/ħ) 



Methods - Hypothetical experiment 1

Fig.-Schematic experiment to demonstrate interference 
with time-dependent scalar potential.
(https://link.aps.org/doi/10.1103/PhysRev.115.485 )

The interference at F depends on the 
phase diff. (S₁ - S₂)/ħ

Interference - Quantum mechanical 
in nature hence effect not seen in 
CM.

No force has been exerted on e- but 
potential still had a physical effect.



Relativistic Consideration

Vector 4 - potential: Aⁱ = (𝜙, Ā)

Relativistic consideration: Covariance of above demands similar results 
from Ā .

Phase diff: (e/ħ) ∮𝜙dt - (Ā/c) . dx 

where 𝜙 is evaluated at center of wave packet.



Fig - Schematic experiment 
to demonstrate interference
with time-independent vector 
potential.
(https://link.aps.org/doi/10.11
03/PhysRev.115.485 )

Methods - Hypothetical experiment 2



Fig - Schematic experiment to demonstrate 
interference with time-independent vector potential.
(https://link.aps.org/doi/10.1103/PhysRev.115.485 )

Methods - Hypothetical experiment 2

Associated phase shift of e⁻ wave 
function: ΔS/ħ = -(e/cħ)∮ Ā . dx

∮ Ā . dx = ∫ H . ds = 𝚽 (total magnetic 
flux inside the circuit, Stoke’s thm)

Although there are no magnetic forces 
acting in the places where the electron 
beam passes, this effect arises.



Citation - Early Years 
● Scopus: 5,041 total citation



Citation - Recent Years 



Overall View
● Connection to 

previous and later 
papers



Fields/Experiments Leading to This Paper

● Deflection of 
electrons by a 
magnetic field

● Electron beam 
interferometer

● Metal whisker 
formation

● Properties of 
small metal 
specimens



Fields Impacted by This Paper

● Electron microscopy
● Neutral interactions 

such as photon-
photon

● Quantum 
mechanical effects 
such as quantum 
computing

● Relativistic quantum 
effects

● Gauge fields
● Gravitational AB 

effect  
● Mathematics



Generalization: Geometric phase

● Consider parameter-dependent 
Hamiltonian H(λ) (λ)=E(λ) (λ)

● λ can be momentum, position, etc.
● Closed path C in parameter space
● (λ)→exp( (C)) (λ), 

(C)=i∫ (λ)dλ
● AB → (λ) is (x), the vector 

potential

i⟨𝟁(k)|(∂/∂k)|𝟁(k)⟩=𝒜(k)

Born, M., Fock, V. Beweis des 
Adiabatensatzes. Z. Physik 
51, 165–180 (1928).



Generalization: Geometric phase

● In crystal, λ=k (p=ħk crystal 
momentum)

● (C): Berry phase

● F= (k): momentum 
space magnetic field called 
Berry curvature



Generalization: Geometric phase

● Allows study of “magnetic 
monopoles”

● Band crossings are sources 
of Berry curvature

● These appear in Weyl 
semimetals

● Other systems have a host of 
interesting features related to 
their Berry curvature



Critiques

The paper…

● Lacks a more in depth discussion of locality 

● Assumes physicality of potentials 

● Doesn't consider  the topological effects in higher dimensions 

● Doesn’t  include the quantum mechanical potential sources 

● Is too math focused 



Conclusions of the paper

● AB implies potentials are physical in QM

● Potentials are fundamental, rather than fields

● Potentials lead to phase factors



Broader conclusions

● The more general geometric phase appears in 
many fields

● Geometric phase can be used to classify 
properties of many condensed matter systems

● Ideas developed are wide-ranging and 
powerful beyond their initial scope


