
Journal Talk Presentation: Optical Atomic Clocks

Mason Housenga, Semih Kacmaz, Keshav Kapoor, and Abby Keenan

Nichol, B.C., Srinivas, R., Nadlinger, D.P. *et al.* An elementary quantum network of entangled optical atomic clocks. *Nature* 609, 689–694 (2022). https://doi.org/10.1038/s41586-022-05088-z

https://p hysics.a ps.org/a rticles/v 13/152

Different Timepieces Throughout History

520: China

996: Europe

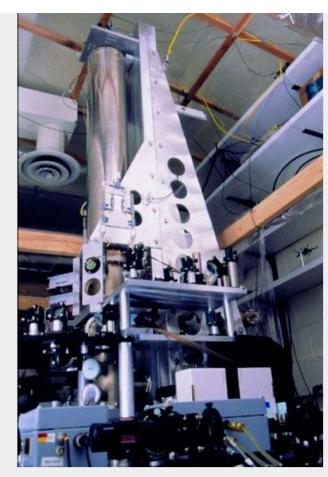
1500s: Ancient Egypt

1868: Switzerland

https://www.nbcnews.com/news/all/egyptian-sundialkept-time-13th-century-b-c-flna1c8979354

History; Goal of Paper; Experimental Setup; Results and Conclusions; Citation Evaluation; Evolution of the Field; Unexplored Problems/Key Points

Using Atomic Vibrations to Help Tell Time


1949: First Atomic Clock

1955: First Cesium Clock

1968: Defining a Second

1999: NIST-F1

In recent years and varying atomic clocks...

https://www.nist.gov/pml/time-andfrequency-division/timeservices/brief-history-atomicclocks-nist ³

- Entanglement for the purposes of enhanced detection has been done for 20+ years.
 - Meyer, V. et al. Experimental demonstration of entanglement-enhanced rotation angle estimation using trapped ions. *Phys. Rev. Lett.* 86, 5870–5873 (2001).

- Entanglement for the purposes of enhanced detection has been done for 20+ years.
 - Meyer, V. et al. Experimental demonstration of entanglement-enhanced rotation angle estimation using trapped ions. *Phys. Rev. Lett.* 86, 5870–5873 (2001).
 - Pedrozo-Peñafiel, E. et al. Entanglement on an optical atomic-clock transition. *Nature* 588, 414–418 (2020).

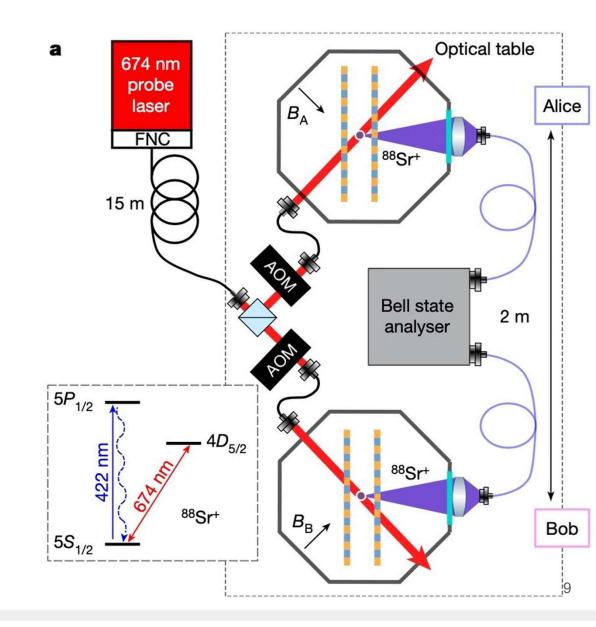
- Entanglement for the purposes of enhanced detection has been done for 20+ years.
 - Meyer, V. et al. Experimental demonstration of entanglement-enhanced rotation angle estimation using trapped ions. *Phys. Rev. Lett.* 86, 5870–5873 (2001).
 - Pedrozo-Peñafiel, E. et al. Entanglement on an optical atomic-clock transition. *Nature* 588, 414–418 (2020).
 - First macroscopic entanglement of clocks.
 - Entanglement in general is what gives advantage to quantum systems to perform certain tasks better than classical systems (e.g. quantum computing).

Slide 6	
1	Use animations to break up this slide, bring in each bullet point in separately. Keshav Kapoor, 11/17/2022

- Entanglement for the purposes of enhanced detection has been done for 20+ years.
 - Meyer, V. et al. Experimental demonstration of entanglement-enhanced rotation angle estimation using trapped ions. *Phys. Rev. Lett.* 86, 5870–5873 (2001).
 - Pedrozo-Peñafiel, E. et al. Entanglement on an optical atomic-clock transition. *Nature* 588, 414–418 (2020).
 - First macroscopic entanglement of clocks.
 - Entanglement in general is what gives advantage to quantum systems to perform certain tasks better than classical systems (e.g. quantum computing).
 - Entanglement also has great applications in metrology (e.g. perturbations to the GHZ state, W state, etc).

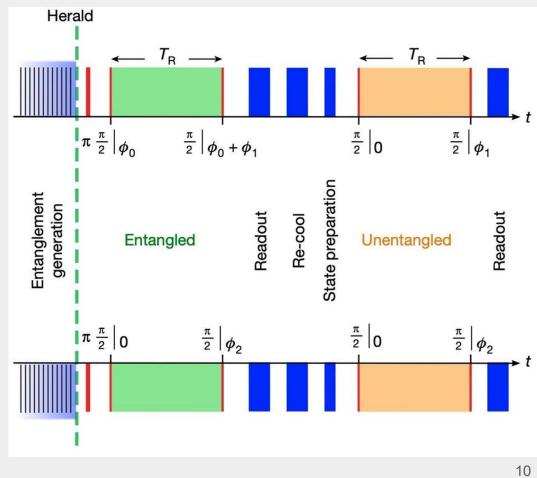
2	Use animations to break up this slide, bring in each bullet point in separately.
	Keshav Kapoor, 11/17/2022

The Goal of the Paper is to Improve the Optical Clocks



https://www.sciencephoto.com/med ia/222718/view/strontium-opticalclock

Experimental Setup


AOM- Acousto-optic Modulator

FNC- Fiber Noise Cancellation

The Experimental Process

Process runs from left to right

$T_{\rm R} = 0.1 \, {\rm ms}$ 1.00 0.75 **Entanglement Doubles** 0.50 **Parity Signal Contrast** ^Darity signal 0.25 measurements 0 --0.25 -0.50 Alice, C = 0.93(1) -0.75 -A Bob, C = 0.95(1)-1.00Contrast worsens for correlated 1.00 measurements: 0.75 imperfect entangled state 0.50 generation Parity signal 0.25 0 Correlated two-

-0.25 -

-0.50

-0.75

-1.00

0

0.1

Entangled, C = 0.78(1)

0.2

Unentangled, C = 0.45(1)

Analysis phase ϕ_1 (2 π)

0.3

0.4

0.5

С

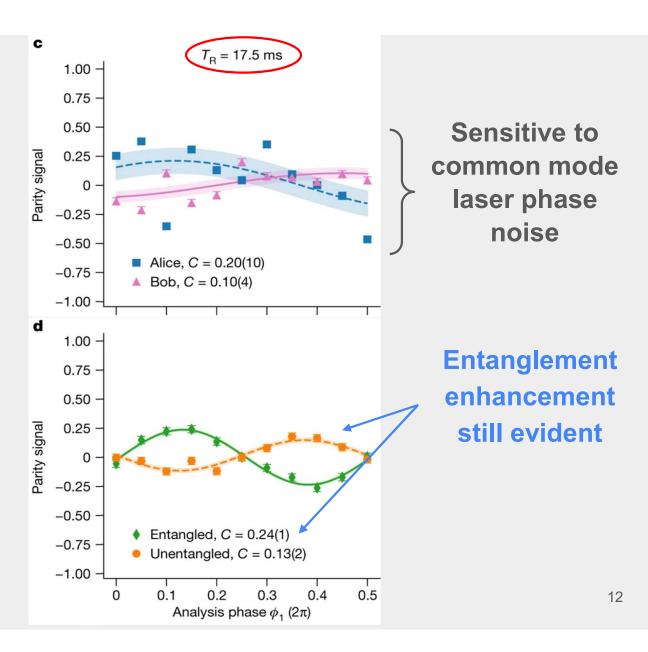
magnetic field noise

11

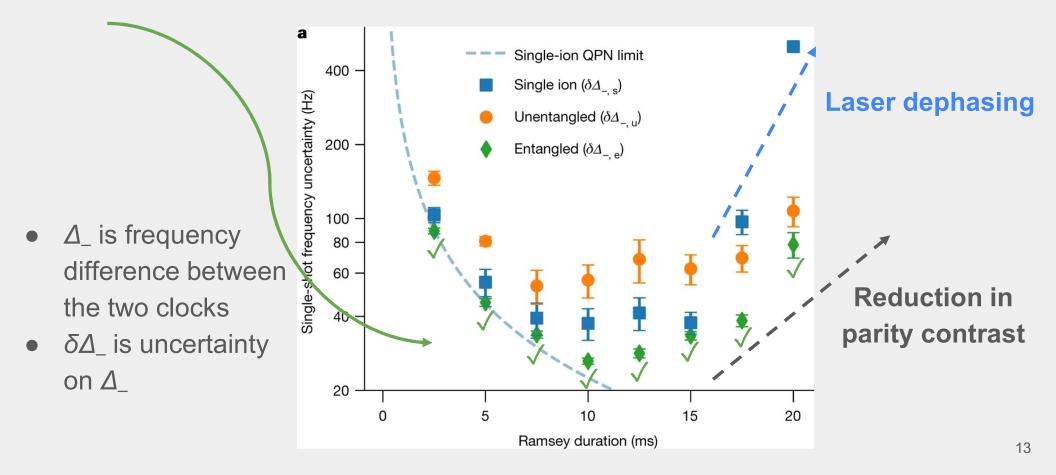
Independent

single-ion

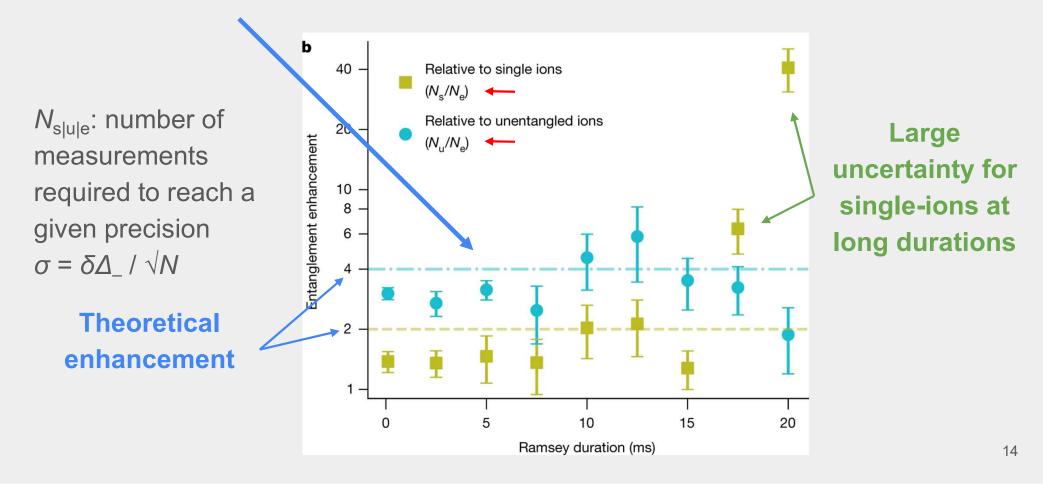
Reduction in


Parity Contrast

ion

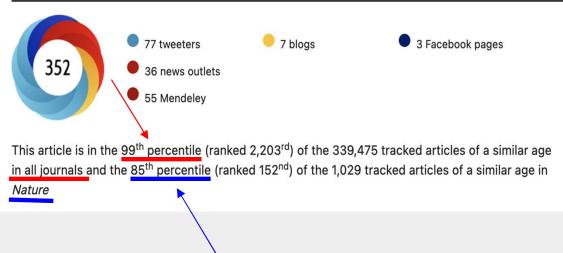

measurements

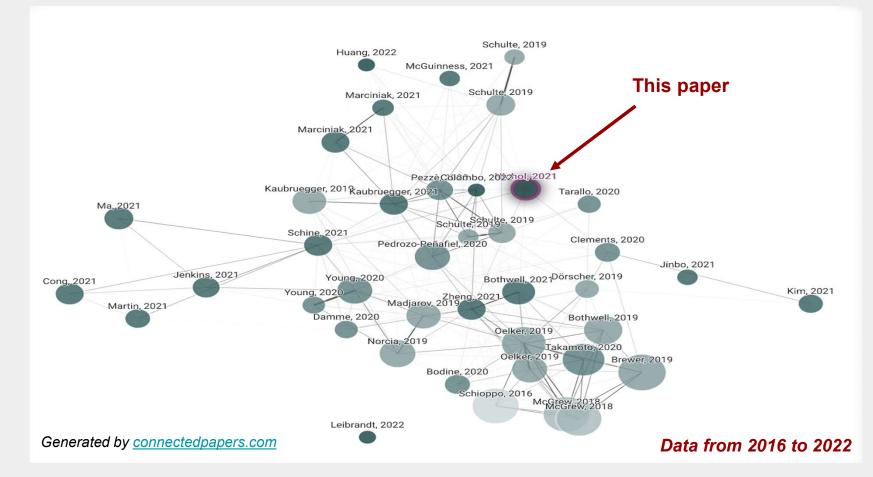
Reduced Contrast at Longer Durations


All signals reduced: qubit decoherence from magnetic field fluctuations

Entangled State Yields Lowest Frequency Uncertainty

Observed Enhancement Close to Theoretical Value


Citation Evaluation


- Hard to make a detailed evaluation as the paper is quite young.
- 8 citations on Google Scholar
- No citation information (yet) on other major databases such as SCOPUS.

Citation Evaluation

- Considerable online attention received...
 - 99th percentile among all articles of similar age¹
 - 85th percentile among all *Nature* articles of similar age¹

Online attention

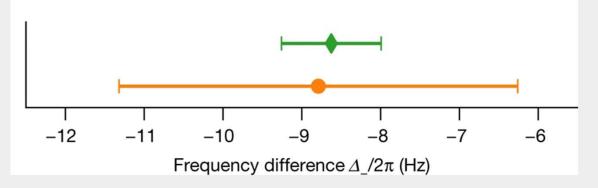
Citation Evaluation – Map of Connected Papers

Evolution of the Field

- Results will have direct impact on multiple subfields:
 - Metrology
 - Quantum Computation
 - Cryptography
 - Fundamental Theory
 - 0 ...
- Schine et al. announced long-lived Bell states in an array of optical-clockqubits (just published in Nature)¹ – quantum metrology

Evolution of the Field

- Krutyanskiy et al. reported the entanglement of trapped ion qubits separated by 230 (!) meters¹– quantum information/network theory:
 - Also mentioned the importance of this work in the context of enhanced timekeeping.
- Follow-up study in which a long-lived quantum memory is integrated into the network discussed in this paper²:
 - Great news... But still not good enough for practical purposes.
- Malia et al. also made progress in robust quantum communication techniques using a mode-entangled network and spin-squeezed states³
 - 1. <u>https://arxiv.org/pdf/2208.14907.pdf</u>
 - 2. https://arxiv.org/abs/2210.11447
 - 3. https://arxiv.org/abs/2205.06382


Unexplored Problems

- This is a massive accomplishment, but there are areas which need to be explored to make it a more viable for future applications.
 - Longer distance!
 - Noise reduction through isolation of magnetic and electric fields.
 - Use a transition that is magnetic field agnostic.

Key Points

- The main point of this paper is the demonstration of macroscopically remote entanglement.
 - Map entanglement onto a long lived state after preparation through a bell state measurement of light.
 - Demonstrate the improvement in visibility performance of the entangled system vs. unentangled system.
 Measurement

Overview

Different timepieces throughout history

Experimental setup and process

Analysis of double parity signal contrast and reduction of contrast att long durations

Entanglement state uncertainty<unentangled state uncertainty

Enhancement is close to theoretical value

Citation Evaluation

Evolution of the Field

Unexplored Problems

Key points of the Paper