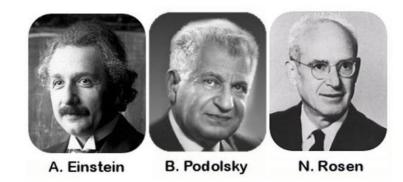
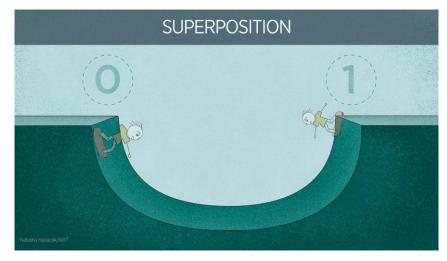
#### Violation of Bell's Inequality under Strict Einstein Locality Conditions

### PHYSICAL REVIEW LETTERS

VOLUME 81 7 DECEMBER 1998 NUMBER 23


#### Violation of Bell's Inequality under Strict Einstein Locality Conditions


Gregor Weihs, Thomas Jennewein, Christoph Simon, Harald Weinfurter, and Anton Zeilinger Institut für Experimentalphysik, Universität Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria (Received 6 August 1998)

Team 1: Hannah Aguirre, Jasper Bradford, Rishi Acharya, Prathik Boyella, Justin Bennett

#### **Overview**

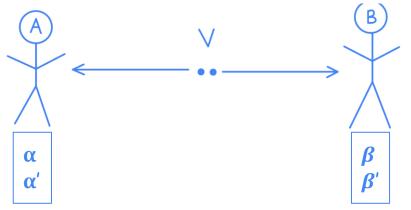
- EPR Paradox and Bell's Theorem
- Local Realism and strict locality conditions
- Experiment methodology and CHSH Inequality
- Conclusions





#### **Definitions of Locality and Realism**

Locality: a physical object is influenced only by its surroundings


 Realism: physical entities objectively exist and have definite values regardless of any observation or measurement

### **CHSH/Bell Theoretical Background**

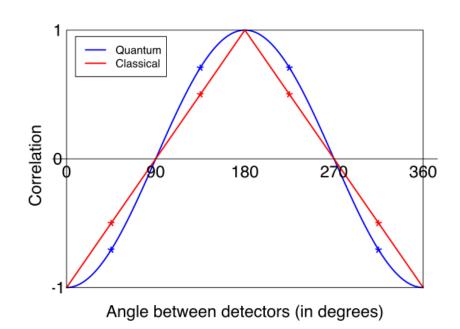
#### **CHSH** inequality

- Clauser, Horne, Shimony, Holt
- Assuming locality and realism

$$S(\alpha, \alpha', \beta, \beta') = |E(\alpha, \beta) - E(\alpha', \beta)| + |E(\alpha, \beta') + E(\alpha', \beta')| \le 2$$



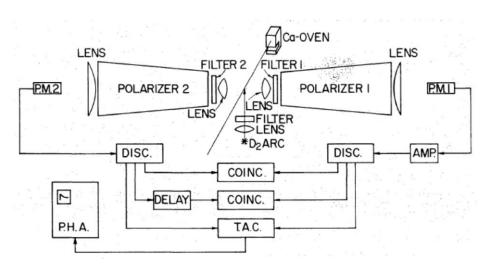



#### **Quantum Entanglement**

- Arises in correlated multiparticle states
- The state of any particle cannot be described independently of the state of the other particles

$$|\Psi\rangle = \frac{|\downarrow\uparrow\rangle - |\uparrow\downarrow\rangle}{\sqrt{2}}$$

#### **Quantum Mechanical Violation of CHSH**


- Our favorite physicists Alice and Bob make spin measurements at two detectors
- Alice rotates her detectors 135 degrees with respect to Bob's
- Then the expectation value for the correlation ends up 2√2

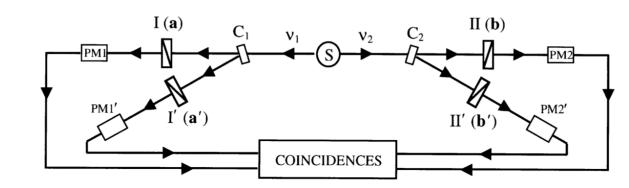


# Measuring incompatible observables of entangled particles

Chien Shiung-Wu (1949): Orthogonal polarizations of photons from pair annihilations

Clauser, Freedman (1972): Polarization measurements along perpendicular axes violate CHSH



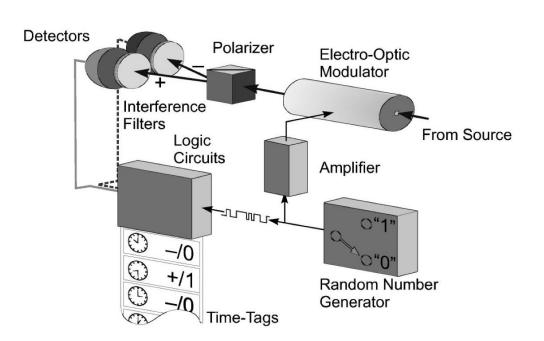

Clauser and Freedman's experiment

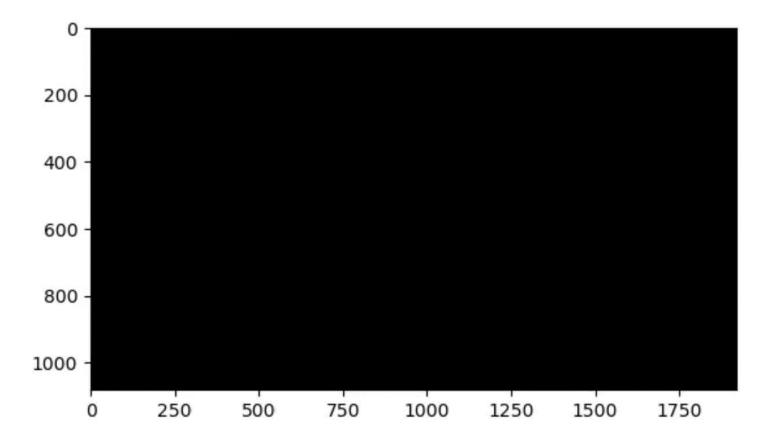
#### Delayed choice of measured observable

Alain Aspect (1982)

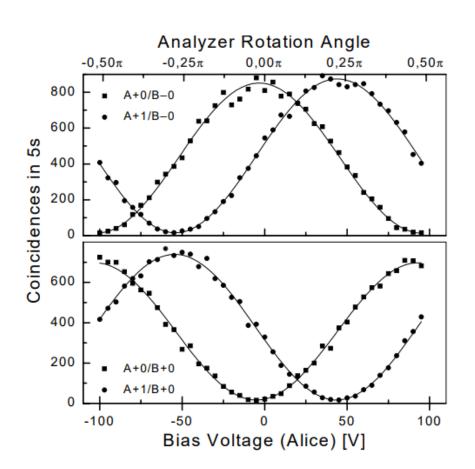
C<sub>1</sub>, C<sub>2</sub> switched every 10 ns

Switches 12 m apart





#### Randomizing measured observable

**Anton Zeilinger (1998)** 


Separation of 400 m (1.3 us)

Randomized control of EOM





#### **Results**



#### **Conclusions**

Predicted quantum correlation S:

$$S = 2.74$$

- $S(0^{\circ}, 45^{\circ}, 22.5^{\circ}, 67.5^{\circ}) = 2.73 \pm 0.02$
- ≈1 in 10<sup>202</sup> probability of happening by chance
- Removes loophole of having predictable detector settings
- Second loophole remains: only 5% of photons were detected

Little doubt that inequality is violated, but what does this mean?



#### **Conclusions**

$$E(a,b) = \int \underline{A}(a,\lambda) \underline{B}(b,\lambda) 
ho(\lambda) d\lambda$$

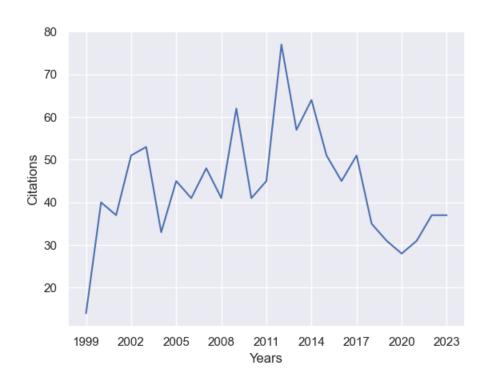
## At least one of the assumptions must be wrong

- Inequality assumes that A and B don't depend on each other's settings (locality)
- Assumes A and B exist/are defined before measurement (realism)
- "A shift of our classical philosophical positions seems necessary"
  - Non-locality (info can travel faster than light)
  - Physical quantities not defined without measurement
  - Remaining loophole



#### **Critique**

- Extremely dense
- Figure x-axis not explained
- Didn't even close all the loopholes


#### **Citation Summary**

Cited 1095 times according to

Scopus

- With FWCl of 12.95
- 2237 times according to

**Google Scholar** 



#### **Evolution of Field**

- Nobel Prize
- Detection efficiency of only 5% could be improved: these results could be an unrepresentative sample (detection loophole)
- Subsequent experiments closed this loophole.



Article Open access | Published: 10 May 2023

## Loophole-free Bell inequality violation with superconducting circuits

#### References and further reading

Weihs, Gregor; Jennewein, Thomas; Simon, Christoph; Weinfurter, Harald; Zeilinger, Anton. Violation of Bell's Inequality under Strict Einstein Locality Conditions. Phys. Rev. Lett., vol. 81, no. 23, pp. 5039–5043, Dec 1998. DOI: 10.1103/PhysRevLett.81.5039

Scientific Background on the Nobel Prize in Physics 2022, The Nobel Foundation. <u>URL</u>.

Scott Glancy, Local Realism, Bell's Inequality, and T-Shirts: An Entangled Tale. URL.

J. Mark Morris, Mapping Uncertainty and Entanglement. **URL**.

**Storz** et al., Loophole-free Bell inequality violation with superconducting circuits. **DOI**.

Bertlmann and Zweilinger (eds.), Quantum [Un]speakables: From Bell to Quantum Information, (2002).