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Ginzburg-Landau theory

GL theory is a general phenomenological method for discussing the onset (or not) of
various kinds of order in many-body systems. It is particularly useful for consideration
of the effects of dimensionality on ordering. The approach is very general and can be
applied e.g. to magnetic transitions, order-disorder phenomena in binary alloys, melting
of crystals . . . However, we shall be primarily interested in a specific application, namely
superfluidity and superconductivity.

In equilibrium and under homogeneous conditions, the superconducting state of a
(3D) metal is believed to be distinguished from the normal by the existence of a finite
and uniform (quasi-) expectation value of the so-called “anomalous average”

ΨBCS(r, t) ≡ 〈ψ↑(r, t)ψ↓(r, t)〉 = V −1
∑
k

〈ak↑a−k↓〉(t) (1)

Since ΨBCS is essentially the wave function of the two-particle state into which Bose
condensation of Cooper pairs has taken place,1 it is intrinsically a complex scalar object.
This is also true for superfluid 4He, where ΨHe is simply (proportional to)the condensate
wave function.2 In the following I will simply write ΨBCS or ΨHe as Ψ, without generally
distinguishing between the two cases. Ψ(r, t) is called the “order parameter” and is the
fundamental object of the GL theory. In the following it will be necessary to discuss sit-
uations in which the order parameter is spatially and possibly temporally varying. Quite
generally, we can define Ψ(r, t) as the (thermal and quantum-mechanical) expectation
value of some operator Ω̂(r):

Ψ(r, t) ≡ Tr ρ̂(t)Ω̂(r) (2)

where ρ̂(t) is the many-body density matrix. (For example, in the BCS case Ω̂(r) ≡
〈ψ̂↑(r)ψ̂↓(r)〉. This definition is very general and in particular does not assume that ρ̂(t)

is necessarily the equilibrium density matrix Z−1 exp−βĤ.
We would now like to write the Helmholtz free energy F as a function of Ψ(r): F ≡

F (T, {Ψ(r)}). Although this was originally done by Ginzburg and Landau in an intuitive
fashion, and is so done in most textbooks, it is important to take a moment to discuss
the meaning of this operation. For illustration let’s start with a very simple example:
a model of N spins with Ising interactions, so that not only the total magnetization
M but the magnetization (spin) of each site commutes with the Hamiltonian and thus
the energy eigenstates |n〉 can be chosen to be simultaneously eigenstates of the total
magnetization M with eigenvalue jµ, where µ is the magnetic moment per atom and j
is an integer. Consider, first, the problem of determining the equilibrium density matrix
of the system at temperature T subject to the condition that the total magnetization M
has some prescribed value M0 = jµ. This problem can be solved by standard textbook
methods, with the result that the probability of occurrence pn of the n-th many-body
state is

pn = Z−1r (M0, T )
[

exp−βEn
]
δMn,M0 (3)

1See AJL, Quantum Liquids, §2.4
2ibid. §2.2
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where the restricted partition function Zr(M0, T ) is given by

Zr(M0, T ) ≡
∑
n

[
exp−βEn

]
δMn,M0 (4)

The restricted Helmholtz free energy is

F (M0, T ) ≡ 〈Ĥ〉(M0, T )− TS(M0, T ) = −β−1 lnZr(M0, T ) (5)

If we now remove the constraint M = M0 and allow the system to come to equilib-
rium at temperature T , then of course the density matrix is just Z−1(T ) exp−βĤ,

(Z(T ) ≡ Tr e−βĤ), i.e. the probability of occurrence of state n is simply Z−1 exp−βEn,
irrespective of its magnetization Mn. So the probability that the system has magnetiza-
tion M is

p(M) = Z−1(T )
∑
n

exp(−βEn) δMn,M

≡ Z−1(T )Zr(M,T ) =
exp−βF (M,T )∑
M exp−βF (M,T )

(6)

(where in the last step we used the fact that Z(T ) ≡
∑

M Zr(M,T )).
Of course, an alternative way of handling the constraint of fixed M is to introduce

a Lagrange multiplier, in this case a “magnetic field” H, so that Ĥ → Ĥ − HM̂ , and
to replace the condition M = M0 by 〈M〉 = M0. In the thermodynamic limit general
theorems of statistical mechanics assure us that the fluctuations of M about M0 are of
order N1/2 ∝ MN−1/2, so the results are the same. However, it is not at all necessary
to do this.

It is straightforward to generalize the above considerations to the problem of deter-
mining the thermal equilibrium condition subject to the set of constraints

M (λ) ≡ µ
∑
i

aiλσzi = Mλ, aiλ = ±1, 0 (7)

since the M (λ) commute with the Hamiltonian and, by virtue of the constraint on the
aiλ, take discrete values nµ. (If we let λ denote a particular site and choose e.g. aiλ = +1
for sites close to λ and 0 for others, than the physical significance of Mλ is as a “coarse-
grained average” of the magnetization in the region of λ). Omitting the intermediate
steps, we define the restricted free energy F ({Mλ}, T ) to be

F ({Mλ}, T ) ≡ −β−1 ln
∑
n

exp−βEn
∏
λ

δ
M

(λ)
n ,Mλ

(8)

so that the probability of occurrence of the set of values {Mλ} is

p{Mλ} = Z−1 exp−βF{Mλ}, Z =
∑
{Mλ}

exp−βF{Mλ} (9)
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Again, it would be possible to handle the constraint M (λ) = Mλ by introducing a set
of Lagrange-multiplier fields Hλ: Ĥ → Ĥ −

∑
λHλM̂ (λ). However, note that now

the equivalence of this method with the above one holds only to order k−1/2, where
k ∼

∑
i |aiλ|2.

The actual problem of interest (involving superconductors/superfluids) differs from
the one discussed above in two respects: the order parameter Ψ(r) is a function of a
continuous variable and moreover itself takes continuous rather than discrete values, and
the corresponding operator Ω̂(r) in general fails to commute with the Hamiltonian. How-
ever, these differences lead mainly to complications of notation rather than substance.
We can very schematically define

F{Ψ(r), T} ≡ −β−1 ln
∑
n

e−βEn δ̃{〈n|Ω̂(r)|n〉 −Ψ(r)} (10)

where the notation δ̃{φ(r)−χ(r)} is an appropriate generalization of
∏
λ δM(λ)

n ,Mλ
to the

continuum limit along the lines of the functional-integral approach, which I shall assume
exists but will not attempt to write out in detail. Then the probability of configuration
Ψ(r) is given by

p{Ψ(r)} = Z−1 exp−F{Ψ(r), T} (11)

where the partition function is now given by the functional integral

Z ≡
∫
DΨ(r) exp−F{Ψ(r), T} (12)

As in the previous two examples, it is again possible to treat the constraint of fixed Ψ(r)
by introducing a Lagrange multiplier function λ(r), so that

Ĥ → Ĥ −
∫
λ(r)Ψ(r) dr (13)

However, there are two reasons why this is not usually done. The first is that, unlike
the first and, to an extent, the second example above, the “field” λ(r) in the supercon-
ducting case, which would violate particle number conservation, does not correspond to
anything which can be applied physically. The second reason is that the equivalence of
the Lagrange-multiplier method to the above one (which results inter alia in eqn. (11))
is valid only to the extent that one can neglect fluctuations of Ψ(r) (or more realisti-
cally some weighted average of it) relative to its average (“mean-field”) value, and it is
precisely in these fluctuations that we are often most interested.

Let’s now try to write the free energy as an explicit function of Ψ, assuming for the
moment that the latter has no spatial dependence. Let’s consider explicitly the BCS
(or helium) case. Since in this case a phase rotation of the order parameter merely
corresponds to a different choice of overall phase of the 2-particle wave function (1-
particle condensate wave function for helium), and the latter has no physical significance,
it follows that the free energy must be invariant under such a transformation and thus
can be a function only of Ψ∗Ψ ≡ |Ψ|2. If we further make, with GL, the very natural
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assumption that F is an analytic function3 of |Ψ|2, then it may be expanded in a power
series:

F (Ψ, T ) = F0(T ) +A(T )|Ψ|2 +
1

2
B(T )|Ψ|4 +O(|Ψ|6) (14)

(where the 1/2 is introduced for subsequent convenience). Note in particular that there
is no term linear (or cubic) in Ψ. Generally speaking, it is sufficient to drop the terms of
order |Ψ|6 and higher, and also (for most purposes) to ignore the zero-order term when
considering the ordering process itself.

Let us briefly consider the result of minimizing the “uniform” free energy F (eqn. (14))
under the assumption that Ψ is indeed constant in space (the standard “mean-field” ap-
proximation). It is clear that if both A(T ) and B(T ) are positive, the value of Ψ which
minimizes (14) is zero, while if B(T ) < 0 the system is unstable (in the approximation
of neglect of the higher-order terms) against formation of arbitrary large values of Ψ.
The interesting case, which is believed to be the one relevant to systems which become
(or would “like” to become) superconducting is B(T ) > 0, with A(T ) changing sign as
a function of temperature. It is usually adequate to set

B(T ) ≡ β > 0 A(T ) ≡ α(T − Tc), α > 0. (15)

Then we have the following results for the “optimal” value of Ψ, i.e. that which minimizes
the free energy (14):

Ψ(T ) = 0, T > Tc

Ψ(T ) =
(
α(T − Tc)/β

)1/2
, T < Tc

The first conclusion should hold rather generically, provided the neglected higher-order
terms in F (Ψ) do not lead to an instability. The second is an approximation resulting
from the neglect of those higher-order terms and the replacement of α ≡ dA/dT and
B(T ) by constants; however, microscopic calculations (e.g. that of BCS in the super-
conducting case) indicate that it is not a bad approximation (within the framework of
mean-field-type ideas, of course) even for Tc − T ∼ Tc.

We now turn to the question of fluctuations of Ψ around its “mean-field” value
calculated above. So long as we retain the constraint that Ψ is constant in space, any
fluctuations of the magnitude of Ψ will cost an energy proportional to the total volume
and will hence be negligible. As to the overall phase of Ψ, in the BCS case this is anyway
physically meaningless. Thus, to see anything interesting we have to relax the constraint
that Ψ is constant in space, and this immediately raises the question of “gradient” or
similar energies.

Imagine that we want to redefine the order parameter Ψ so as to take into account
possible spatial variation. In any specific case the formal extension of the definition is
usually straightforward; e.g. in the BCS case we would write

Ψ(r) ≡ 〈ψ↑(r)ψ↓(r)〉 = V −2
∑
k

∑
q

〈ak+q/2,↑a−k+q/2,↓〉 exp iqr (16)

3If we do not make this assumption, then in general we cannot exclude terms of the form (e.g.)
const |Ψ| (≡ const (|Ψ|2)1/2).
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(which, unlike the earlier definition, allows Ψ to be a function of r). If the order pa-
rameter so defined is varying “sufficiently” slowly in space, the result will look locally
much like the uniform case described above. What is “sufficiently” slowly? A necessary
and, as it turns out, also sufficient condition is that the variation should be small on the
length scale of the order of the “structure” of the object defined by Ψ. In the case of BCS
theory these objects are Cooper pairs, which have a (nearly temperature-independent)
radius ∼ ξ0 ≡ ~vF/∆(0), so this criterion gives |(dΨ/dx)/Ψ| � ξ−10 . So suppose Ψ(x)
is indeed bending slowly in space.4 What is the extra free energy cost associated with
the bending? It should be a function of ∂Ψ/∂x and, possibly also Ψ itself; if we assume
analyticity, than the lowest order term in the gradient is of the form |∂Ψ/∂x|2×f(|Ψ|2),
where f can be expanded in Taylor series and thus, barring pathologies, tends to a con-
stant in the limit T → Tc. Thus, at least near Tc, the bending energy has the simple
form

Fbend = γ

∫
dx

∣∣∣∣∂Ψ

∂x

∣∣∣∣2 (17)

where γ is a constant (which turns out to be related to the superfluid density, see lecture
10). This is the form usually assumed in GL theory; in fact, in the BCS case it can be
justified from microscopic theory in this limit (and the coefficient γ calculated). In both
cases, the microscopic theory indicates that the coefficient is itself a function of |Ψ|2 and
hence of T , but the resulting T -dependence is fairly weak and (17) is often an adequate
approximation.5

The “bulk” terms in the free energy (i.e. those depending on Ψ itself rather than its
gradient) may be expected to have the same form, locally, as in the uniform case, so the
total free energy can be expressed as a functional of the order parameter Ψ(x) in the
form

F ({Ψ}, T ) =

∫
F(Ψ(x), T ) dx (18)

where the free energy density F is given by

F(Ψ(x), T ) = α(T − Tc)|Ψ(x)|2 +
1

2
β|Ψ(x)|4 + γ|∂Ψ(x)/∂x|2 (19)

the standard form of the GL free energy function for the translationally-invariant case
(in the absence of a magnetic vector potential: cf. below). It is clear from the above
formula that we can define a characteristic length ξ(T ) by

ξ(T ) = (γ/α|T − Tc|)1/2 (20)

This is known as the correlation length or healing length6: note its (T−Tc)−1/2 divergence
as T → Tc. The physical significance of this length, in the condensed phase, is that it

4For the moment we will consider only a strictly 1D variation, Ψ(r) ≡ Ψ(x).
5Note that F is actually a sum of two terms, namely |∂|Ψ|/∂x|2 and |Ψ|2|∂φ/∂x|2 where ψ(r) is the

phase of Ψ(x); in the more general case the coefficients (γampl and γphase) are not necessary equal.
6Or sometimes, rather misleadingly, as the “coherence length”.
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is a measure of the minimum distance over which one can “bend” the order parameter,
either in magnitude or in phase, before the bending energy becomes comparable to
the condensation energy (the latter is −1

2α
2(T − Tc)2/β ∼ α(Tc − T )|Ψ0|2, while the

bending energy = γ(∂Ψ/∂x)2 ∼ γL−2|Ψ0|2, where Ψ0 is the equilibrium value of the
order parameter and L is the characteristic length of bending; they are equal in order
of magnitude when L ∼ (γ/α(Tc − T ))1/2 ∼ ξ(T ), as stated). The actual magnitude of
ξ(T ) must be determined from microscopic theory; in the BCS case it turns out to be of
order ξ0(1 − T/Tc)−1/2 where ξ0 ∼ ~vF/∆(0) is the characteristic “scale of structure”.
Since ∆(T ) ∼ ∆(0)(1−T/Tc)1/2 we can equally well say that ξ(T ) is of order ~vF/∆(T ).
We see that our previous general criterion for applicability of the simple GL formulae,
namely |(∂Ψ/∂x)/Ψ| � ξ−10 , is compatible with bending on the scale of ξ(T ) if T → Tc.

So far, we considered explicitly only a strictly 1D situation. Obviously, if our system
is really 2D or 3D and is isotropic, all we have to do is to replace the argument x in
Ψ(x) by r (Ψ → Ψ(r)) and generalize the gradient term in F to |∇Ψ(r)|2. In the case
(for example) of a system which is 3D but anisotropic, again we set Ψ→ Ψ(r), but now
the bending energy has the form

Fbend =

3∑
i=1

γi|∂Ψ/∂xi|2 (21)

where the three γi are in general different. We can then define different correlation
(healing) lengths for the different axis:

ξi(T ) ≡ (γi/α|T − Tc|)1/2 (22)

Note that the more “difficult” the motion is in a given direction, the smaller γi and
hence the shorter the correlation length at fixed T .7

A very interesting and common case is where the motion in two directions is essen-
tially continuous, but that in the remaining direction has to be treated in discrete terms.
An obvious example are the cuprates, where the 2D motion in a given CuO2 plane can be
treated as continuous but the different planes (or at least the different multilayers) must
be treated as discrete. In such case we need a different notation: the order parameter
must be treated as a function of a continuous in-plane variable r, and a discrete variable
n which labels the planes: Ψ→ Ψn(r). The bulk terms are sums of continuous analogies
to the above one, i.e. (neglecting the Ψ-independent term, etc.)

Fbulk =
∑
n

∫
dr‖

{
α(T − Tc)|Ψn(r‖)|2 +

1

2
β|Ψn(r‖)|4

}
(23)

The in-plane bending energy is also a sum of terms similar to those described above:

F‖ =
∑
n

∫
dr‖ γ‖|∇‖Ψn(r‖)|2 (24)

7E.g. in the cuprate superconductors γ⊥ (perpendicular to CuO2 planes) � γ‖.
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where the notation “‖” indicates the direction(s) parallel to the planes.
What about the “bending” energies in the direction(s) perpendicular to the planes?

Here we must be more careful. The most natural assumption is that only nearest-
neighbor planes are coupled; if in analogy to the bulk case we content ourselves with the
lowest-order term allowed by symmetry, it has the following form

F⊥ = −J
2

∫ ∑
n. n.

(
Ψi(r‖)Ψ

∗
j (r‖) + c.c.

)
dr‖ (25)

where J is to a first approximation independent of T (in particular, it does not tend to
zero for T → Tc). To calculate J for any specific case we need a microscopic model of
the interplane contact; e.g. in the BCS case this is provided by the Bardeen-Josephson
tunneling model and J turns out to be an effective Josephson coupling constant. There
is now an important difference from the continuous case, in the sense that the maximum
energy per unit area to “dislocate” one plane relative to its neighbors is finite, namely zJ
where z is the number of nearest neighbors (2 in the 2D case). The interesting question
is whether or not this energy is greater or smaller than the total condensation energy per
unit area of the system in question. Generally speaking, in the case of systems we think
of as “quasi-2D” and at temperatures appreciably away from Tc, it will be smaller (this
could in fact be taken to be the definition of a “quasi-2D” system in this context). In
that case it makes perfect sense to consider possible fluctuations involving the complete
dislocation of neighboring planes (though cf. next lecture). However, close to Tc we
see that F⊥ scales as |Ψ|2, hence as Tc − T , whereas the “bulk” condensation energy is
proportional to |Ψ|4, i.e. to (Tc−T )2. Hence sufficiently close to Tc the energy necessary
to dislocate neighboring planes relative to one another is large enough to take us out
of the condensed phase, and such fluctuations can be neglected. Once this condition is
well fulfilled, it is consistent to replace RHS of the expression for F⊥ by a continuum
expression, as follows: we have from our original discrete expression

F⊥ = −J
2

∑
n

∫
dr‖

{
Ψ∗n+1(r‖)Ψn(r‖) + c.c.

}
(26)

Now we subtract from the “bulk” free energy a term of the form

J
∑
n

∫
|Ψn|2 dr‖ ≡

J

2

∑
n

∫
dr‖

{
|Ψn+1|2(r‖) + |Ψn|2(r‖)

}
(27)

and compensate by adding it to F⊥, which then becomes

F⊥ = +
J

2

∫ ∑
n

|Ψn+1(r‖)−Ψn(r‖)|2 dr‖ (28)

Now, provided that the variation of Ψ(r‖) from one plane to the next is small compared to
Ψ(r‖) itself (which must be true in this limit if we are not to exceed the bulk condensation
energy), we can approximate Ψn(r‖) by a continuous function of the 3D coordinate
r ≡ (r‖, z) and write

Ψn+1(r‖)−Ψn(r‖) ≈ a(∂Ψ(r)/∂z) (29)
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(where a is the interplane distance), and the interplane coupling term F⊥ becomes

F⊥ = +
Ja2

2

∫
|∇zΨ(r)|2 dzdr‖ ≡

Ja2

2

∫
|∇zΨ(r)|2dr (30)

So we have recovered the continuum expression, with the bending coefficient γ⊥ identified
with Ja2/2. It is clear that the condition for the procedure to be self-consistent is that
the “perpendicular” correlation length ξ⊥(T ) calculated in this way should be large
compared to the interplane spacing a. The overall upshot of the analysis is that, at
least within the framework of mean-field theory, an arbitrary system which undergoes
a second-order phase transition always looks “3 dimensional” sufficiently close to Tc
(i.e. like a highly anisotropic 3D continuum).

To conclude this lecture, let’s write down the equation which determines the average
value of Ψ(r) in thermal equilibrium in the “mean-field” approximation. By definition,
the latter is obtained by setting δF{Ψ(r)}/δΨ(r) = 0. If no special boundary conditions
are imposed on Ψ(r), then it is intuitively obvious that the minimum value of F is
achieved by setting Ψ(r) = const, and the condition ∂F/∂Ψ = 0 then just gives back
the results obtained above. If on the other hand physical conditions impose nontrivial
boundary conditions on Ψ(r) (e.g. Ψ(r)→ 0 on the interface between the superconductor
and a normal metal) then we must include the gradient terms in the minimization.
Performing the standard integration by parts, we obtain in the isotropic case

γ∇2Ψ(r)− α(T )Ψ(r) + β|Ψ(r)|2Ψ(r) = 0 (31)

which is the standard form of the GL equation (mean-field equation) for the order
parameter Ψ(r) in a neutral system.

One final note: If the system we are discussing is charged and Ψ(r) is the relevant
order parameter, as in the case of superconductivity, then it is necessary to modify
eqn. (19) for F by the standard minimal-coupling replacement

∇Ψ(r)→
(
∇− (2ie/~)A(r)

)
Ψ(r) (32)

where A(r) is the electromagnetic vector potential (the factor of 2 arises because Ψ(r)
is essentially the center-of-mass wave function of the Cooper pair). Also, the free energy
then contains an additional, purely electromagnetic term µ−10

∫
(∇ × A(r))2 dr. With

these modifications, the condition δF/δΨ = 0 now leads to a modified form of eqn. (31)
in which

∇2Ψ(r)→
(
∇− (2ie/~)A(r)

)2
Ψ(r) (33)

while the condition δF/δA leads to Maxwell’s equation ∇2A(r) = −µ−10 j(r) with the
electromagnetic current j(r) given by the expression

j(r) = iγ
2e

~
(
Ψ∗(r)(∇− 2ie

~
A(r))Ψ(r)− c.c.

)
(34)

We shall mostly not need this generalization, as it turns out that in most quasi-2D
situations the electromagnetic coupling is of minor importance (see lecture 13).


