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Miscellaneous topics in BCS theory (relevant to SC2)

1. Limits on Tc in BCS-type theories

BCS theory:
Tc = 1.13~ωc exp−1/g g ≡ N(0)|Veff | > 0 (1)

so, prima facie, limiting value is 1.13~ωc &RT if ωc ∼ ωD. (but formulae not quantita-
tively valid then!)

Two problems with BCS theory:

(i) no account of repulsive Coulomb interaction

(ii) if indeed Tc, hence ∆, is comparable to ωD then frequency dependence of interaction
(‘retardation’) may be important.

(i) Inclusion of Coulomb interaction:
A prima facie problem is that the Coulomb interaction scatters into states with

energies � ∆ and even � ωD. This can be handled by renormalization technique of
lecture 6: recall,

t̂ = V̂ /(1 + P̂1Q̂V̂ ), P̂1Q̂ ≈
∑
|ε|>εc

(2εk)−1 (2)

where the sum goes over states beyond a cutoff εc which it is convenient to take as (∼)
ωD. If the matrix element Vkk′ is roughly constant at some value Vc, then we have

Vc
∑
k

1

2εk
' VcN(0) ln(εF/ωD) (3)

and hence the effective interaction to within the shell is constant and given by

t =
Vc

1 +N(0)Vc ln(εF/ωD)
(4)

In the general case the effect is to adjust the ‘effective’ εc. In the literature it is conven-
tional to write N(0)Vc ≡ µ, N(0)t ≡ µ∗, then we have

µ∗ = µ/(1 + µ ln(εF/ωD)) (5)

so for µ → ∞, µ∗ → (ln εF/ωD)−1 (typically ∼ (ln 102)−1 ∼ 0.15 − 0.2). So, if phonon
coupling constant N(0)|Vph| is λ (see below), then the total effective value of g is λ−µ∗,
and so we obtain

Tc = 1.13~ωD exp−1/(λ− µ∗) (6)

(ii)∗ Inclusion of phonon ‘retardation’:

∗For a detailed account of Eliashberg theory, see article by Scalapino in Parks.
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Eliashberg equations (at T = 0):

∆(ω) =
1

Z(ω)

∫ ∞
0
dω′Re

{
∆(ω′)(

ω′2 −∆2(ω′)
)1/2

}[∫ ∞
0
dΩα2(Ω)F (Ω)× 2(ω′ + Ω)

(ω′ + Ω)2 − ω2
− µ∗

]
(7a)(

1− Z(ω)
)
ω =

∫ ∞
0
dω′Re

{
ω′(

ω′2 −∆2(ω′)
)1/2

}[∫ ∞
0
dΩα2(Ω)F (Ω)× 2(ω + Ω)

(ω′ + Ω)2 − ω2

]
(7b)

Note that eqns. (7a-b) do not take account of the screened Coulomb interaction consid-
ered in (i): this will be included in lecture 1 of SC2.
(α2(Ω) ≡ mean-square coupling constant to phonons in frequency range [Ω,Ω+dΩ], F (Ω) =
phonon DOS in this range) Note: 1st Eliashberg equation (7a) is, apart from Z(ω) cor-
rection, simply†

∆k =
∑
k′

Vkk′
∆k′

2Ek′
, Vkk′ ≡ |gkk′ |2

Ek′ + ωph(k− k′)(
Ek′ + ωph(k− k′)

)2 − E2
k

(8)

The second Eliashberg equation (7b), which is also valid in the normal phase (∆(ω′) = 0),
expresses the renormalization of the single-electron energy by emission and absorption
of virtual phonons; by comparing (7b) to the standard second-order perturbation theory
expression, we see that Z(ω) is the ratio of the value of εk as renormalized by the electron-
phonon interaction to the original value. Thus the 1/Z(ω) in eqn. (7a) expresses the
corresponding renormalization of the DOS. Note that in the limit of weak coupling
(∆ � ωD) we can renormalize and introduce cutoff ωc � ωD on ω′: Then the term
(ω′ + Ω)/((ω′ + Ω)2 − ω2) can be just approximated as Ω−1, and we find it is consistent
to put Z(ω) = 1(+0(λ)), ∆(ω) = const, and thus obtain a BCS theory, with the effective
λ given by

λ = 2

∫ ∞
0
dΩ

α2(Ω)F (Ω)

Ω
(9)

McMillan and Rowell: differential conductance measures ∆(ω) via

(
∂I/∂V

)
S
(ω)/

(
∂I/∂V

)
N

= Re

{
ω(

ω2 −∆2(ω)
)1/2

}
, ~ω ≡ eV (10)

then can reconstruct α2(Ω)F (Ω), compare with e.g. neutron scattering data. Fits in
general very good.
McMillan:

Compute Tc from (finite-T variant of) Eliashberg equations: in practice must use
definite form of α2(Ω)F (Ω), so take the one for Nb. Result well fitted by

Tc =
θD

1.45
exp−

{
1.04(1 + λ)

λ− µ∗(1 + 0.62λ)

}
, λ ≡ 2

∫ ∞
0
dΩ

α2(Ω)F (Ω)

Ω
(11)

†since
∫
dE
ε

=
∫
dε
E

.
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One sees that even in the limit λ→∞ (which is probably unrealistic, because the lattice
is likely to be unstable in this limit) the maximum value attainable is

Tmax
c =

θD

1.45
exp−

(
1.04

1− 0.63µ∗

)
.
θD

5
(12)

However, McMillan suggested that even this is rather optimistic, since there seems em-
pirically to be a cancellation such that for a given class of materials λ ∝ 1/MωD

2:
thus, any attempt to increase λ is accompanied by a decrease in the prefactor (∼ θD).
By extrapolating empirical values McMillan empirically predicted a Tc ∼ 40K for V3Si
(actually Tc ∼ 24K).

Nb. Empirically,† values of λ appear to be in the range 0.25–1.12 (for Pb) and
those for µ∗ in the range 0.1–0.2. [Allen & Dynes, Phys. Rev. B 12, 95 (1975) suggest
Tc ∼ 0.15λ〈ω2〉1/2]

[Excursion: how good is experimental evidence for Eliashberg equations as such?
McMillan & Rowell: ‘believed to be correct to lowest order in ~ωD/εF ∼ 10−2 − 10−3,
and we are able to show experimentally that errors not larger a few %’: but Tc/ωD is
only of order of few % even for Pb!]

[H2S at ∼200 GPa: See Duan et al. Sci. Rep. 4, 6968 (2014). Li et al., J. Chem.
Phys. 140, 174712(2014): Drozhdov et al., ArXiv: 1412.0460]

2. Where is the energy saved?
G.V. Chester, Phys. Rev. B 103, 1693 (1956)

Consider an arbitrary metal (in zero magnetic field) at T = 0. The total energy is the
sum of electron KE Km, nuclear KE KM and the total Coulomb energy V , which is the
sum of e–e, e–n and n–n terms. Thus its expectation value U is given by

U = 〈Km〉+ 〈KM 〉+ 〈V 〉 (13)

The second input is the virial theorem, which states that

〈Km〉+ 〈KM 〉+
1

2
〈Q〉 =

3

2
pΩ (Ω = volume) (14)

where Q is so called virial, namely

Q ≡ −
∑
ij

rij∇rijV (rij) (15)

which sums over all particles (e and n). Because V (rij) = ±Ze2/|rij |, we have the simple
equality Q = V . Thus, the second relation is

〈Km〉+ 〈KM 〉+
1

2
〈V 〉 =

3

2
pΩ (Ω = volume) (16)

†i.e. by taking λ from independent data and fitting Tc to McMillan formula.



PHYS598 A.J.Leggett (Mini-) Lecture 15 Miscellaneous topics in BCS theory 4

Finally, we have Feynman-Hellmann theorem

−M
(
∂U

∂M

)
= 〈KM 〉 (17)

(we have a similar theorem for Km, but it is not much use since the electron mass is not
variable).

Now let us subtract these results for the superconducting ground state from those
for the normal one,‡ and denote Xs −Xn ≡ ∆X (so that in particular ∆U < 0 ). We
get:

∆〈Km〉+ ∆〈KM 〉+ ∆〈V 〉 = ∆U

∆〈Km〉+ ∆〈KM 〉+
1

2
∆〈V 〉 =

3

2
∆(pΩ)

−M∂〈U〉
∂M

= ∆〈KM 〉

(18)

(19)

(20)

It is convenient to work at constant pressure: then the term 3
2p∆Ω is known, experimen-

tally, to be extremely small compared to ∆U , so we may legitimately neglect it. Also,
we use the experimental fact that the shape of the curve U(T ) is to a high degree of
approximation independent of M , and thus ∆U ∝ T 2

c ∝ M−2α, where α is the isotopic
exponent. Thus eqn.’s (18-20) reduce to

∆〈Km〉+ ∆〈KM 〉+ ∆〈V 〉 = ∆U

∆〈Km〉+ ∆〈KM 〉+
1

2
∆〈V 〉 = 0

∆〈KM 〉 = 2α∆U

(21)

(22)

(23)

[note that eqn. (23) is independent of the assumption of negligible ∆Ω]. Thus,

∆〈V 〉 = 2∆U

∆〈Km〉 = −(1 + 2α)∆U

∆〈KM 〉 = 2α∆U

(24)

(25)

(26)

For most of the simple BCS superconductors, the experimental value of α is approxi-
mately 1/2. Thus, we find

∆〈V 〉 = −∆〈Km〉 = 2∆〈U〉 (note ∆U < 0!) (27)

∆〈KM 〉 = ∆U (28)

Thus, we get the surprising result that the decrease in Coulomb energy by formation
of the superconducting state is exactly balanced, in the limit α = 1/2, by the increase
in electron kinetic energy, and the condensation energy can be attributed entirely to a
saving in nuclear kinetic energy ! Note that this conclusion is completely independent of
any microscopic theory, in particular of BCS theory which postdates Chester’s work (by
a month or so!).

‡With the magnetic field energy which in practice is necessary to stabilize the normal state subtracted
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3. d-vector notation§

Definition: 〈ψα(r)ψβ(r′)〉 ≡ Fαβ(r− r′) or 〈akαa−kβ〉 ≡ Fαβ(k)
concise notation:

d = (iσyσ)αβFβα (29)

(if in doubt, play with Zeeman states of S = 1 molecule!)
Consider a given value of k and let the relevant spin-space ‘wave function’ be |Ψ〉. If

d real, S · d|Ψ〉 = 0, i.e. S = 1, Sz = 0 along d
also, along any axis ⊥ d, | ↑↑〉+ eiφ| ↓↓〉.

If for any single value of k d ≡ d(k) is real (though its direction may depend on
the direction of k) then the many-body state in question called ‘unitary’. For unitary
states, easier to choose axes separately for each k, (e.g. along d) simply described by
scalar F (k), and scalar gap ∆(k), with Fk = ∆(k)/2Ek, Ek = (εk + |∆(k)|2)1/2. In a
single reference frame F and ∆ are matrices in spin space:

Fαβ =
∆αβ

2Ek
(30)

and |∆|2 is given by
|∆(k)|2 = Tr ∆(k)∆†(k) ∼ |d(k)|2 (31)

Examples of unitary states (in superfluid 3He): ABM (d = const), BW (d(n̂) ∝ n̂).

§This notation is useful for the description of Fermi superfluids with spin triplet pairing, such as
superfluid 3He. See e.g. AJL QL §6.2


