Lecture 2. Phenomenology of (classic) superconductivity

(References: de Gannes chapters 1-3, Tinkham chapter 1)

Statements refer to "classic" (pre-1970) superconductors (Al, Sn, Pb, alloys...). Most but not all statements apply also to HTS, fullerenes, heavy-fermions, organics...

1. Definition of superconductivity

The superconducting state differs qualitatively from the normal (nonsuperconducting) state in 3 major respects:

- (a) d.c. conductivity (in zero magnetic field & for small enough current) effectively infinite (seen either in voltage-drop experiments, or in persistence of current in rings)
- (b) simply connected sample expels <u>weak</u> magnetic field (Meissner effect): perfect diamagnet, i.e. B = 0. [convention for <u>H</u>, <u>B</u> later]
- (c) Peltier coefficient^{*} vanishes, i.e. electrical current not accompanied by heat current (contrary to usual behavior in normal phase).

These three phenomena set in essentially <u>discontinuously</u> at a <u>critical temperature</u> T_c which may be anything from ~1 mK to ~25K (higher for HTS, etc.) For most elements & alloys, $T_c \sim$ a few K. (Note: this is ~3-4 orders of magnitude below T_F and ~1-2 below θ_D) Onset is <u>abrupt</u>: no reliable way of telling, from *N*-state bulk measurements, whether superconductivity will set in at all, let alone at what temperature. (but cf. proximity-effect measurements on Cu etc.). For new HS compounds, at a pressure of 200 GPa, T_c can exceed 200K.

2. Occurrence

Superconductivity appears to occur only in materials which in the normal phase (i.e. above T_c) are metals or (occasionally, under extreme conditions) semiconductors: There is no clear case in which, as *T* is lowered, the system goes from an insulating to a *S* state[†]. In the case of the classic superconductors, *N* state is almost always a "textbook" metal (see (3) below).

However, the correlation between *N*-state conductivity σ and the occurrence of superconductivity is <u>negative</u>: the best *N*-state conductors (Cu, Ag, Au) do <u>not</u> become superconducting (at least down to 10 mK, and there is some reason to believe

^{*}Peltier coefficient Π is defined as ratio of heat current to electric current for $\nabla T=0$: see Ziman, P. Th. Solids, pp. 201-2.

[†]Theoretically such a transition is predicted to be possible under extreme conditions. The experimental evidence is unconvincing for the classic superconductors and ambiguous for HTS: M.V. Sadovskii, Phys. Rev. 282, 226 (1997).

they never will). In the periodic table of the elements, superconductivity occurs mainly in the middle: see AM p. 726, table 34.1, or Kittel (3^{rd} edition), p. 338, table 2. Many intermetallic compounds, e.g. Nb₃Sn, V₃Ga, often with high T_c (~20K).

Superconductivity is not destroyed by <u>nonmagnetic</u> impurities, in fact T_c sometimes increases with alloying & there are thousands of superconducting alloys, including some with very high (20-25K) T_c . But <u>magnetic</u> impurities (i.e. impurities carrying electrons with nonzero total spin) are rapidly fatal: e.g. pure Mo is superconducting with T_c ~1K, but a few ppm of Fe drives T_c to zero. No known case among classic superconductors where superconductivity coexists with any form of magnetic ordering. (but situation in "exotics" more complicated)

Isotope effect: in most though not all cases of classic superconductivity, $T_c \propto M^{-1/2}$. (crucial clue to mechanism)

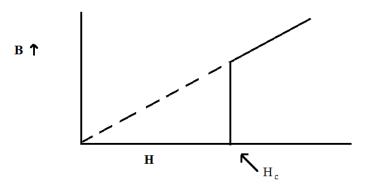
3. Normal state of superconductors

Almost all the classic superconductors are, above T_c , "textbook" normal metals: i.e. $C_{\nu} \sim T$, $\chi \sim \text{const.}$, $\rho \sim \text{const.} + f(T)$ $(f(T) \sim T \text{ for } T \gg \theta_D)$, $\kappa/\sigma T = \text{const.}$, etc.

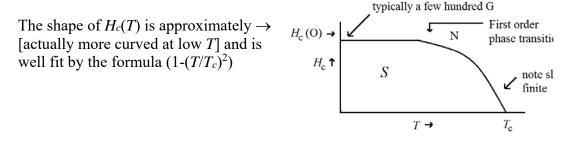
4. Magnetic behavior of superconducting phase

For a given material, the magnetic behavior is in general a function of the shape of the sample: the simplest case to analyze is a (large) long cylinder parallel to the external field. In this case, there are 2 types of behavior, type-I and type-II. Most pure elemental superconductors are type-I (exception: pure Nb): compounds and alloys tend to be type-II, and this is the case for virtually all the highest- T_c materials.

(a) **Type-I**: At any given $T < T_c(0)$, if we gradually raise *H*, system remains perfectly superconducting up to a definite critical field $H_c(T)$, at which point it goes over discontinuously (by a first-order transition) to the normal phase and readmits the magnetic field completely. In terms of the B(H) relation^{*}:



^{*}It is conventional in the theory of superconductivity to define H as the field due to external sources, and B as the total local field averaged over a few atomic distances. Thus, $B = \mu_0 H + M$ where M is the average magnetization due to macroscopic circulating currents. (Atomic-scale variations usually not considered)



The reason for the existence and behavior of the critical field $H_c(T)$ is a straightforward thermodynamic one: the *S* state has a negative (condensation) energy relative to the *N* state, but since it excludes the magnetic field entirely, this costs an (extra) energy

$$dE_{mag} = -\mathbf{M} \cdot d\mathbf{H}_{ext} \Longrightarrow E_{mag} = + \frac{1}{2} \mu_0 H^2_{ext} V \qquad (S1 \text{ units})$$

since *M* is <u>oppositely</u> directed to H_{ext} (diamagetism). ($B = 0 \Rightarrow M = -\mu_0 H$) (This is essentially the energy necessary to "bend" the field lines so as to avoid the sample) (levitation). In the normal phase, excluding small atomic-level magnetic effects, the extra energy is zero. Thus it becomes energetically advantageous to switch to the N phase at the point

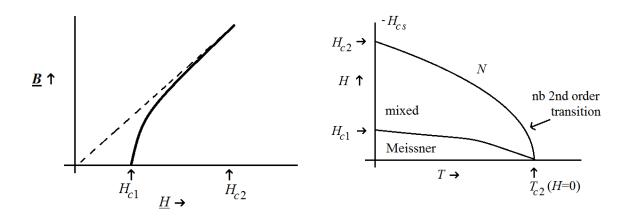
$$G_n(T) - G_s(T) = \frac{1}{2} \mu_0 H^2 \equiv \frac{1}{2} \mu_0 H^2_c(T) \qquad [\Rightarrow \text{ transition } 1^{\text{st}} \text{ order}]$$

and this is a useful method of measuring the LHS. (See below (5)).

Above analysis is for a "large" sample. Actually, there is a characteristic length λ (cf. below) over which field penetrates. Thus, for sample sizes < λ , we expect the thermodynamic critical field to be higher, and this is indeed seen.

Note also that for samples of less convenient shape may get a break-up into N and S regions (intermediate state: distinguish from "mixed" state, below).

(b) <u>Type-II</u>: start with T < T_c(H = 0), turn up field H. For sufficiently small field behaves as type–I, i.e. expels flux completely ("Meissner state"). Above a "lower critical field" H_{c1}, flux begins to penetrate, so *M* is negative but |*M*| < μ_o*H*, so B > 0. As *H* further increased, *M* becomes smaller until at an "upper critical field" H_{c2} it vanishes (in the bulk) & system switches to normal state. Apart from this, in the "mixed" state between H_{c1} and H_{c2} system behaves in a typically superconducting way (though cf below for resistive behavior).



Anticipate: in mixed state, magnetic field punching through in form of vortices (cores effectively normal), while bulk remains superconducting.

Can define $H_c(T)$ for type-II as above from $G_n - G_s$. Then, to an order of magnitude $H_{c1} \cdot H_{c2} \sim H_c^2$. Typically $H_{c1} \sim$ a few $G, H_{c2} \sim$ several T. (30T for V_3Ga)

5. <u>Resistance</u>

One can make one simple statement about the d.c. resistance *R* of a superconductor: For any bulk type-I superconductor when the field (including that generated by the current) is everywhere less than $H_c(T)$, or for a bulk type-II superconductor when it is less than $H_{c1}(T)$, the effective resistance is zero. It is also true that for a type-I superconductor, those parts which are in a field $< H_c(T)$ have local resistivity zero: however, because any current will generate a spatially varying field, the <u>total</u> resistance even of a thin wire is a quite complicated function of current^{*}. For a single wire (dimensions $\ll \lambda$) in zero external magnetic field the resistance is zero up to a critical current $I_c(T)$ defined by Silsbee's rule, i.e.

 $I_c(T) = H_c(T)a/2$, a=radius of wire

As *I* is increased beyond $I_c(T)$, the resistance jumps discontinuously to a value ~ 0.7 – 0.8 of the normal-state value, and for $I \gg I_c(T)$ approaches the latter.

For type-II superconductors situation is even more complicated, because in general in the mixed phase even <u>local</u> resistivity is not zero, (due to the possibility of flux flow). A formula which often describes the behavior in this region quite well is (cf. Tinkham section 5.5.1)

 $\rho/\rho_n \cong B/\mu_0 H_{c2}$ [effect of pinning]

^{*} See Tinkham section 3-5.

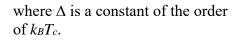
Again, in a thin wire resistance first develops when $I_c = H_{c2}(T)a/2$ and tends to the normal value asymptotically as $I \rightarrow \infty$.

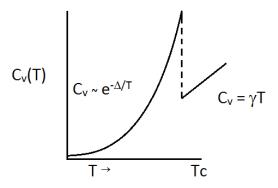
The above all refers to d.c. resistance. The a.c. resistance is nonzero even when all regions of the superconductor are in the Meissner phase: generally speaking, R increases as some power of ω

- 6. Microscopic properties of the superconducting phase
 - (a) Specific heat C_{ν} . (after subtraction of phonon terms)

This is $\propto T$ in the *N* phase. There is a jump[†] at T_c , such that $\Delta C_v/C_v^{(n)} \cong 1.4$ (or sometimes a little greater, up to 2.65 for Pb). For $T \ll T_c C_v$ drops below the *N* state value, and as $T \rightarrow 0$ follows

$$C_v|_{T\to 0} \sim \exp - \Delta/\kappa T$$





A very useful relation between the specific heat and the thermodynamic critical field $H_c(T)$ can be obtained by differentiating twice the relation $G_n - G_s = 1/2\mu_0 H_c^2(T)$, namely

$$c_n - c_s = -T \frac{d^2}{dT^2} \left(\frac{1}{2} \mu_o H_c^2(T) \right)$$

(and $S_n - S_s = -\mu_o H_c \frac{\partial H_c}{\partial T} \rightarrow$ transition 1st order in finite *H*) Although in this relation c_n and c_s should strictly speaking be evaluated at $H = H_c(T)$, it is usually adequate to insert the H = 0 values. In particular as $T \rightarrow T_c$ ($H_c \rightarrow 0$) we have

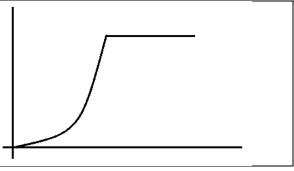
$$c_n(T_c) - c_s(T) = -T\mu_o \left(\frac{\partial H_c}{\partial T}\right)_{T_c}^2$$

[†] Note the fact that $c_s \sim c_n$ indicates only electrons with $\in k_B T_c$ (much) affected by the onset of superconductivity.

This can be checked experimentally, and is often used to determine c_s more accurately. Note that since $c_s \rightarrow 0$ as $T \rightarrow 0$ while $c_n \propto T$, the form of H_c^2 (hence also of H_c) in this limit is $H_c(T) \cong H_c(0)(1-(T/T^*)^2)$ where $T^* \sim T_c$.

(b) <u>Pauli susceptibility χ </u> (Type – I)

This can often be measured from the Knight shift. We find χ drops off sharply for $T < T_c$ and as T=0 tends exponentially to zero, like c_v .



(c) <u>Ultrasound attenuation</u> (α)

The longitudinal attenuation remains proportional to ω as in the normal phase, but the coefficient drops off sharply. (roughly as $(T/T_c)^4$) The transverse ultrasonic attenuation has a discontinuous drop at T_c (consequence of Meissner effect), thereafter drops similarly.

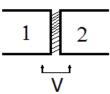
(d) <u>Thermal conductivity</u> (κ)

The thermal conductivity in the *N* phase for $T \sim T_c$ is usually dominated by electrons rather than phonons. Generally speaking it has no discontinuity in the superconducting phase, but drops similarly to the ultrasonic attenuation and $\rightarrow 0$ for $T \rightarrow 0$. (For low enough *T*, phonons may again dominate).

(e) <u>Nuclear relaxation rate T_1^{-1} </u>

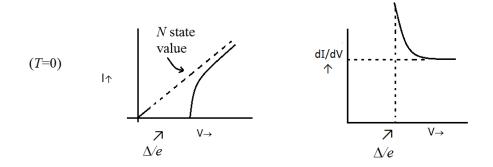
In the *N* state $\Gamma \equiv T_1^{-1}$ is roughly $\propto T$. (Korringa law). As *T* falls below T_c , Γ first rises (the famous Hebel-Slichter peak) then falls, roughly similar to χ ., and $\rightarrow 0$ as $T \rightarrow 0$.

EM absorption (as seen e.g. in reflectivity): lower than in N state at low ω , rises sharply at $\omega \sim 2\Delta$, when Δ is "gap" observed in c_{ν} .



(f) <u>Tunneling</u>.

The tunneling current between two *N* metals, whether the same or different, is usually proportional to the voltage applied across the barrier, so dI/dV = const.When one metal is a S and the other a N metal, no current flows for either polarity until $e|V|=\Delta$, where Δ is the same quantity as appears in the low-temperature specific heat. If we plot dI/dV rather than I(V)



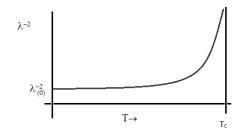
At finite $T < T_c$:

If both metals are *S*, we get qualitatively similar behavior, with however Δ replaced by the sum $\Delta_1 + \Delta_2$.

[Also: Josephson tunneling]

(g) <u>Penetration depth. λ </u>

This is one quantity which is not defined in the *N* phase: it is the depth to which, in the Meissner phase, an *EM* field penetrates into the surface of the superconductor. It turns out to be more convenient to plot $\lambda^{-2}(T)$, which as we shall see has a direct physical interpretation:



 λ tends exponentially to its *T*=0 limit as *T* \rightarrow 0, again with an exponent $\sim \Delta/kT$, and diverges in the limit *T* \rightarrow *T_c*, as $(1 - T/T_c)^{-1/2}$.