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Fundamental Ideas of BCS Theory.

References: Kuper, Schrieffer, Tinkham, De Gennes, articles in Parks. AJL RMP 47,
331 (1975); AJL Quantum Liquids ch. 5, sections 3–4.

Notations: will use ξk for absolute value of kinetic energy for free gas, i.e., ~2k2/2m,
and when necessary also for Bloch or Bloch-Landau energies. εk ≡ ξk − µ is single
particle energy in relation to chemical potential (which we may usually take =εF ),
Ek reserved for something special to BCS theory. N(0) ≡ 1

2

(
dn
dε

)
εF

is the density
of states of one spin at Fermi surface, vF is Fermi velocity.

1 General nature of BCS state∗

In a ‘generic’ BCS-type state (not necessary ground state), the N electrons, or a finite
fraction of them, are bound into Cooper pairs, such that wave function of pairs is bounded
in the relative coordinate, and moreover the Cooper pairs are Bose-condensed, i.e. all in
the same state with respect to both relative and center-of-mass coordinate.

Formally, (for N = 2Npair = even), the topological structure of many body wave
function is of the general form:

ΨN (r1σ1 . . . rNσN ) = NA [φ(r1σ1; r2σ2)φ(r3σ3; r4σ4) . . . φ(rN−1σN−1; rNσN )] (1)

where all φ’s are the same (‘generalized’ BCS). (N ≡ normalizer, A ≡ antisymmetrizer)
Description certainly adequate for classic superconductors, probably also including high
temperature superconductors. Differences with a simple BEC of diatomic molecules
(liquid D2?); ‘size’ of Cooper pair�mean distance between particles (e.g. for Al ∼ 104 Å
vs. 2–3 Å).

Why should system form such a state? At T = 0, evidently to lower energy; simplest
case is attractive potential, then intuitively advantageous to localize particles relative to
one another. However, for 2-particle problem in free space not every attractive potential
gives rise to bound state! Here, Fermi statistics makes all the difference, as shown by
Cooper (1956).

2 Cooper instability
L.N. Cooper, Phys. Rev. 104, 1189 (1956)

Consider two particles of spin 1/2 interacting in free space via spin-independent potential
V (|r1−r2|). We can choose energy eigenstates to be spin singlet or triplet corresponding
to orbital wave function being symmetric or antisymmetric respectively: for definiteness,
consider singlet case. Choose reference frame so that center of mass is at rest, then orbital
wave function has form:

Ψ = ψ(r1 − r2) ≡
∑
k

cke
ikr1e−ikr2 (2)

∗until further notice, consider clean samples and neglect crystal-lattice effects (corresponds to Som-
merfeld model for normal state).
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If Vkk′ (≡ Vk−k′) is matrix element for scattering (k,−k) → (k′,−k′), the time inde-
pendent Schrödinger equation has the form:

(2ξk − ε̃0)ck = −
∑
k′

Vkk′ck′ (3)

(k′ sums over all wave vectors, ε̃0 = energy eigenvalue).
For sufficiently weak (negative) Vkk′ in 3D this has no negative energy solutions (also,

of course, not for positive V ).
Now modify the problem by occupying states up to Fermi surface kF with other

electrons, thus excluding the scattering pair from the states k < kF. The only difference,
now, is that the sum over k′ on the r.h.s. of (3) now only runs over k′ > kF. Now the
interesting question is: Does there exist a state with energy less than 2εF ≡ 2µ? Rewrite
(3) in terms of εk and ε0 = ε̃0 − 2µ:

(2εk − ε0)ck = −
∑
k′>kF

Vkk′ck′ (4)

If Vkk′ > 0, in general still no bound state solution. But if Vkk′ < 0 and approaches
finite limit as k, k′ → kF, always exist a solution with ε0 < 0, i.e. ‘bound’ relative to
state of two free particles!

Example: Cooper’s original problem, Vkk′ = −V0 for |εk|, |εk| both < εc, otherwise
0.

ck =
V0

2εk − ε0

∑
k′

ck′ ⇒
[∑

k

ck

]
=
∑
k

V0
2εk − ε0

[∑
k′

ck′

]
⇒

1 =
∑
k

V0
2εk − ε0

, or putting
∑
k

= N(0)

∫
dεk, 1 = N(0)V0

∫ εc

0
dε

1

2ε− ε0
=
N(0)V0

2
ln(1 + 2εc/|ε0|)

⇒ ε0 =
−2εc

e2/N(0)V0 − 1
≈ −2εc e

−2/N(0)V0 if N(0)V0 � 1

Note nonanalyticity in V0 ⇒ cannot be obtained by perturbation theory. In 3D free
space argument fails because

∑
k →

∫
ε1/2 dε 6= const

∫
dε.

Structure of the relative wave function: for r ≡ r1 − r2 and ck ∼ 1/(2εk − ε0) we
have

Ψ(r) =
∑
k

cke
ikr =

∑
k>kF

eikr

2εk − ε0
≈ 1

r

∫ kc

kF

dk
k sin kr

2εk + |ε0|
= −1

r

d

dr

∫ kc

kF

cos kr

2εk + |ε0|
dk

≈ −1

r

d

dr

{
cos kFr

∫ εc

0

cos εr/~vF
ε+ |ε0|/2

dε︸ ︷︷ ︸
≡J(r)

+(similar term in sin kF r)
}

where k − kF ≈ εk/~vF was used.
The wave function is thus essentially that of two freely scattering particles, r−1 sin kFr,

times the integral J(r). It is clear that the latter is roughly constant for r < ~vF/|ε0|
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and thereafter falls off as different components start to interfere. It can be shown that
J(r) falls off as 1/r, thus Ψ(r) ∼ 1/r2 and now state is bound in space of the relative
coordinate.† The ‘radius’ of the bound state is about ~vF/|ε0|, hence exponentially large
as V0 → 0.

Depairing : Note that the existence of a bound state solution to Cooper problem
rests essentially on the fact that the DOS of available states goes to a constant as ε→ 0.
Suppose we split the Fermi surface, e.g. by a Zeeman field, so that εF↑ 6= εF↓. Then for
a pair with K = 0 minimum excitation energy relative to ‘zero’ (two free particles) is
∆εF = εF↑ − εF↓. Then

1 = N(0)V0

∫ εc

0

dε

2ε+ ∆εF − ε0
(5)

and now |ε0| = |ε(0)0 | − ∆εF. So, when ∆εF is & the binding energy of the state for
∆εF = 0, no bound state solution possible.

Another example of depairing: Suppose ∆εF = 0 but we require pair to have finite
center of mass momentum K relative to Fermi sea. Then it is fairly clear that minimum
value of εk is of order ~vFK, so, again, solution disappears when K & |ε0|/~vF. (Could
we ‘cancel’ these two effects against one another?).

Cooper calculation unsatisfactory, in that it treats two electrons as ‘special’, rest
only as blocking states in Fermi sea. Obviously, would like to treat all electrons on equal
footing.

3 BCS wave function

To emphasize generality of BCS concepts, initially make no particular assumption about
potential, etc. Fundamental assumption, as above, is that ground state wave function
(GSWF) is in class:

Ψ(r1σ1 . . . rNσN ) = A [φ(r1σ1; r2σ2)φ(r3σ3; r4σ4) . . . φ(rN−1σN−1; rNσN )] (6)

and A is antisymmetrizer. φ must be antisymmetric under exchange r1σ1 
 r2σ2. Note
all pairs have same φ.

Specialize to

(a) spin singlet pairing;

†As it stands this argument is not convincing, since 〈r2〉 diverges. (However, Cooper used this
argument!). But see de Gennes problem on p. 96 (who cheats: ∂g/∂ξ has singularity at εc!)
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(b) orbital s-wave state;

(c) center of mass at rest.

Then we can assume

φ(r1σ1; r2σ2) = 2−1/2 (↑1↓2 − ↓1↑2)× φ(r1 − r2) (7)

and φ is even in r1 − r2. Make Fourier expansion of φ

φ(r1 − r2) =
∑
k

χ(k)eik(r1−r2), χ(k) = χ(|k|), so that χ(−k) = χ(k) (8)

Note at this point:
{
|k ↑〉1| − k ↓〉2 − | ·− k ↓〉1|k ↑〉2 ≡ |11〉k ≡ a+k↑a

+
−k↓|vac〉.

Then

φ(r1σ1; r2σ2) =
1√
2

(↑1↓2 − ↓1↑2)
∑
k

χ(k)eik(r1−r2) ≡

∑
k

1√
2
χ(k)

(
↑1↓2 eik(r1−r2)− ↓1↑2 eik(r1−r2)

)
=

= (k→ −k in the second term) =

1√
2

∑
k

χ(k) ((k ↑)1(−k ↓)2 − (−k ↓)1(k ↑)2) ≡
∑
k

χ(k)|k ↑ occ,−k ↓ occ〉 (9)

≡
∑
k

χ(k)|11〉k

≡
∑
k

χ(k)a†k↑a
†
−k↓|vac〉 ≡ Ω†|vac, 〉

The N -body wave function above is just

ΨN = (Ω†)N/2|vac〉 (10)

Note: automatically eigenstate of N .
Note: normal ground state is special case! Since

Ψnorm
N =

∏
k<kF

a†k↑a
†
−k↓|vac〉 Fermi statistics

=
( ∑
k<kF

a†k↑a
†
−k↓

)N/2
|vac〉 (11)

which is special case with χ(k) = θ(kF − |k|). However, in this case

φ(r1 − r2) ≡ φ(r) = const

∫
FS
dk exp ikr = const

1

r3
(sin kFr − kFr cos kFr) (12)

Thus P (r) ∼ r−4 as r →∞, and the mean square radius 4π
∫
r2P (r) d3r

≡ const.
∫∞
0 r4P (r)dr diverges.
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4 BCS method§

Relax particle number conservation and minimize not Ĥ but Ĥ−µN̂ (Bogoliubov, 1948).

One obvious way of doing this is to replace
(
Ω†
)N/2

by (assuming N even)

exp Ω† ≡
∞∑
N/2

(
Ω†
)N/2

/(N/2)! (13)

Thus neglecting for the moment normalization,

Ψ = exp
{∑

k

χ(k)a†k↑a
†
−k↓

}
|vac〉 ≡

∏
k

exp
{
χ(k)a†k↑a

†
−k↓
}
|vac〉 (14)

But since (a†k↑a
†
−k↓)

2 = 0, this is just equivalent to

Ψ =
∏
k

(
1 + χ(k)a†k↑a

†
−k↓
)
|vac〉 (15)

Go over to representation in terms of occupation spaces of k ↑, −k ↓: |00〉k, |10〉k,
|01〉k, |11〉k. Then

Ψ =
∏
k

Φk, Φk ≡ |00〉k + χk|11〉k (16)

Above is not normalized, so multiply by (1 + |χk|2)−1/2 and write

Φk = uk|00〉k + vk|11〉k, |uk|2 + |vk|2 = 1, vk/uk = χk (i.e. vk = χk/
√

1 + |χk|2)

Normal GS is special case with uk = 0 and vk = 1 for k < kF and uk = 1, vk = 0 for
k > kF. Thus, the general form of N -nonconserving BCS wave function is

ΨBCS =
∏
k

(
uk|00〉k + vk|11〉k

)
≡
∏
k

(
uk + vka

†
k↑a
†
−k↓
)
|vac〉 (17)

Note this is very general, e.g. we need not even assume (as we did above) that χk,
hence uk and vk, are functions only of |k|. (But to introduce triplet pairing needs
some modification). It is clear that multiplying the uk and the vk simultaneously by
exp iφk (φk real but arbitrary) only multiplies the total Ψ by a phase factor and has
no physical effect: thus, we can take all the uk real (and will do so). Then it turns
out (cf. below) that physical quantities depend only on the magnitudes |uk|, |vk| and
the relative phases of the vk: thus, multiplying all vk by same factor exp iφ (φ 6= f(k))
affects nothing physical. A very important observation for the conceptual formulation

§For a particle-conserving method of deriving the same results, see AJL, Quantum Liquids, section
5.4.
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is that an N -conserving many body wave function can be obtained by the “Anderson
trick”

ΨN =
1

2π

∫ 2π

0
dφΨBCS(φ) exp−iNφ (18)

where
ΨBCS(φ) ≡

∏
k

(
uk + (vk exp iφ)a†k↑a

†
−k↓
)
|vac〉 (19)

This approach effectively justifies the BCS trick of relaxing particle number conservation
(at least for the even-N states). (Note ∆N2 ∼ N).

5 The ‘pair wave function’

A very important quantity, which turns out effectively to play the role of the relative
wave function of a Cooper pair, is (at T = 0)

Fk ≡ ukvk (20)

or its Fourier transform F (r) =
∑

k Fk exp ikr. To see why, let us consider the evaluation
on the many body wave function (17) of a spin-independent 2-particle quantity such as
the potential energy 〈V 〉 (we take this for definiteness, but could replace it by any
2-particle operator). Quite generally we have

〈V 〉 =
1

2

∑
pp′q
σσ′

Vpp′q〈a†p+q/2,σa
†
p′−q/2,σ′ap′+q/2,σ′ap−q/2,σ〉 (21)

(where for a local potential, Vpp′q ≡ V (q), but for the moment we leave it general). It is
fairly easy to see that if we apply the operator in 〈 〉 to a Ψ of the form (17), most terms
lead to wave fuctions which do not have the structure of Ψ and thus cannot contribute
to 〈Ψ|V |Ψ〉. In fact, there are only 3 types of term which can contribute:

(1) Hartree terms: (q = 0). These lead to

〈V 〉Hartree =
1

2

∑
pp′

σσ′

Vpp′0 〈npσnp′σ′〉 (22)

In case Vpp′0 ≡ V0, these are just 1
2V0〈N

2〉 ≈ 1
2V0〈N〉

2.

(2) Fock terms, corresponding to σ = σ′, p = p′. These give

〈V 〉Fock = −1

2

∑
pqσ

Vppq 〈np+q/2σnp−q/2σ〉 (23)
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Because of the uncorrelated nature of the BCS wave function we can replace the
right hand side by

−1

2

∑
pqσ

Vppq 〈np+q/2σnp−q/2σ〉 = −1

2

∑
pqσ

〈np+q/2,σ〉〈np−q/2,σ〉

= −1

2

∑
pqσ

Vppq |vp+q/2|2|vp−q/2|2 (24)

(cf. below on KE). In general we should keep these terms, but in the usual limit
considered by BCS, there is a standard argument that they are essentially the same
in the normal and superconducting phases and thus can be neglected in analyzing
the transition; see next lecture.

(3) The pairing terms (the interesting term!). These correspond to p + q/2 = −(p′ −
q/2), σ′ = −σ. Writing for convenience: p + q/2 = k′, p− q/2 = k, we have

〈V 〉 =
1

2

∑
kk′σ

Vkk′ 〈a†k′σa
†
−k′−σakσa−k−σ〉 (25)

where Vkk′ ≡ Vk+q/2,k′−q/2,k−k′ : for a local potential V (r) this is just V (k − k′)
where V (k) is just the Fourier transform of V (r). Note that expression (24) is
N -conserving!

Because of the factorizable nature of the BCS wave function this reduces (except
for the O(N−1) case of k = k′) to the expression

〈V 〉pair =
1

2

∑
kk′σ

Vkk′ 〈a†k′σa
†
−k′−σ〉〈a−k−σakσ〉 (26)

or using the spin singlet nature of the wave function

〈V 〉pair =
1

2

∑
kk′σ

Vkk′ 〈a†k′↑a
†
−k′↓〉〈a−k↓ak↑〉 (27)

It remains to evaluate the quantity

〈a−k↓ak↑〉 ≡ 〈ΨBCS|a−k↓ak↑|ΨBCS〉 (28)

= 〈φk|a−k↓ak↑|φk〉 = u∗kvk〈00|a−k↓ak↑|11〉 = u∗kvk = ukvk

since uk taken real, and similarly 〈a†k′↑a
†
−k′↓〉 = uk′v

∗
k′ . Hence

〈V 〉pair =
∑
kk′

Vkk′FkF
∗
k′ , Fk ≡ ukvk (29)

In the case of a local potential V (r), we can write this in terms of the Fourier
transform F (r) =

∑
k exp ikrFk:

〈V 〉pair =

∫
drV (r)|F (r)|2 (30)
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Compare for 2 particles in free space: 〈V 〉2p =
∫
drV (r)|ψ(r)|2. Thus, for the

paired degenerate Fermi system, F (r) essentially plays the role of the relative
wave function ψ(r). (at least for the purpose of calculating 2-particle quantities).
It is a much simpler quantity to deal with than the quantity φ(r) which appears
in the N -conserving formalism. [Note however, that F (r) is not normalized.]

We do not yet know the specific form of u’s and v’s in the ground state, hence
cannot calculate the form of F (r), but we can anticipate the result that it will be
bound in relative space and that we will be able to define a ‘pair radius’ by the
quantity

∫
r2F 2 dr/

∫
F 2 dr.

Emphasize: everything in sections 3–5 above very general and can be done inde-
pendently of whether or not the state we are considering is actually the ground
state.

(Anderson pseudospin representation)


