Physics 598SC Professor Anthony J. Leggett

Superconductivity, Ancient and Modern — Department of Physics
Phys598 — Fall 2018 University of Illinois
Lecture #6

Quantitative Development of BCS Theory
Ref: AJL, Quantum Liquids, ch. 5, sections 4 and 5.

Recap: “fully condensed” BCS state described by N-nonconserving w.f.

U=]]®  ®u= w00 >k +oufll >y (1)
k
]uk|2 + ‘Uk|2 = 1.

We need to determine the values of uy in the GS, i.e. the state which minimizes the total

energy with the —/LN subtraction, i.e.
H=T—-uN+V (2)

In the following, we ignore the Fock term in < V' > until further notice (we already saw
the Hartree term just contributes a constant, %Vo < N >? ) Then < V > is just the pairing

terms, see Lecture 5:

<V >= Z ka’FkFlju Fy = uyvy. (3)

Kk’
Vi = matrix element for (k |, -k 1) — (k' 1, -k |)

Now consider the term
T - /’LN = Z nka(gk - :U’) = Z Nko €k (4)
ko ko

It is clear that |00 > is an eigenstate of ny, with eigenvalue 0, and |11 >y an eigenstate
with eigenvalue 1. Hence, taking into account the ) _,
< T —uN >=23", alu]? (note: has finite negative energy in normal gas!)
and so:
< H>=2 Z ex|vi]? + Z Vi (uie vy ) (uge vy (5)
Kk KK/

and this must be minimized subject to constraint |uk|? 4 |v|* = 1



One pretty way of visualizing problem: Anderson pseudospin representation: Put
ux (= real) = cos by /2, vk = sin(fx/2) - expigx (6)
Then, apart from a constant (D, ex),

1
< H >= Z(—ek cos Ox) + 1 Z Vi sin 0y sin Oy - cos(dx — Pi) (7)
k Kk’

Anderson pseudospin representation of BCS Hamiltonian: use Pauli vectors oy such that

(“classically”) |ox| = 1 and take Oy, ¢ to be polar angles, then (up to a constant)

1

< H>= _Zekazk+ZZka’0—kL‘0’k’L = —de'Hk (8)
Kk Kk’ K
(01 = component of oy in xy= plane)

where pseudo-magnetic field Hy given by

Hy = e + Ak (9)
1
Ay = ) Z Vi O’ | (-sign introduced for convenience) (9b)
k/

Rather than representing Ay and oy, as vectors in the xy-plane, it is actually very convenient
to represent them as complex numbers Ay = Ay, + 1Ay, 0k = Oz + 10py.

Evidently the magnitude of the field Hy is
[Hadl = (e + | Ak?)'? = B (10)

and in the ground state the spin k lies along the field Hy, giving an energy —FEy. If spin is

reversed, this costs 2Ey (not Fy!). This reversal corresponds to
Ox — ™ — by, Ok — Pk + T (11)

and up to an irrelevant overall phase factor this corresponds to

0
uy, = sin Ek exp —idx = vy (12)
Uy = — COS bhe _ —u

i.e., the excited state so generated is
O = vr]00 > —uy|11 > (13)
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which may be verified to be orthogonal to the GS &y = u,|00 > +vy|11 >. (remember, we
take wuy real)

Since in the GS each spin k must point along the corresponding field, this gives a set of
self-consistent conditions for the Ay’s: since oy/; is a unit vector, its in-plane component
must be equal to that of the unit vector Hy/|Hy| namely Ay/Fx.

That is

ox1 = Ap/Ey (14)

and so form eqn. (9b)

Ay = — Z Viaw A /2Ey <+ BCS gap equation. (15)
k/

Note derivation is quite general, in particular never assumes s-state (though does assume
spin singlet pairing)
Alternative derivation of BCS gap equation: Simply parametrize u, and vy by Ay and

Ex = (& + |Ak]?)Y?, as follows:

o = A e = it o (16)
T (AP + (B + @) T (AP + (B + a)?)?
This clearly satisfies the normalization condition: |uy|? + |vx|? = 1, and gives
1 €k 1 Ek Ak
2 2
|uxc| 2( + Ek)» vk 2( Ek), UV 2, (17)
The BCS energy (5) can therefore be written in the form
Ax AL
< H >= 1 —e/E — 18
zk:a(( ex/ k)+§2Ek 2E] (18)

The various Ay are independent variational parameters: varying them to minimize (H) and

using 0Ey/0Ax = A/ Ex, we find an equation which can be written

Al*(/
, 1
Zka 5 Ek/ =0 (19)

Cancelling the prefactor and taking the complex conjugate gives back the standard gap
equation.

[Assume s-state until further notice, i.e., Ax = function of only |k|.]

Behavior of < n, > and Fy in groundstate
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Let’s anticipate the result that in most cases of interest, Ay will turn out to be ~ const

= A over a range > A itself near the F.S. Then we have < nyx >= |ug[? = (1 — \/ﬁ)
‘K

and Fyx = ugvg = ﬁ



\ y y

oW

Thus, behavior of < ny > qualitatively similar to normal-state behavior at finite 7" (but

2

falls off very slowly, ~ €2 rather than exponentially). Fj falls off as |¢|~! for large €. [F(r)

in coordinate space: see below, lecture 7.]

BCS theory at finite T’

Obvious generalization of N-conserving GSWF: many body density matrix p is product
of density matrices referring to occupation space (call it k) of states k 1, —k |.

p=]]r (20)

k

The space k is 4-dimensional, and can be spanned by states of the forms

Oip = uk|00 > +vy|11 >, “ground pair” (21)
Opp = 0|00 > —uy |11 >, “excited pair”

@g% = |10 >, ‘szp = |01 >, “broken pair”

As regards the first two, they can again be parametrized by the Anderson variables 0y, ¢y:
the difference, now, is that there is a finite probability that a given “spin” k will be reversed,
i.e., the pair is in state ®gp rather than ®4p. There is also finite probability that the pair
in question will be a broken-pair state, in which case it clearly will not contribute to < V' >
and thus not to the effective field. Thus, we can go through the argument as above and

derive the result.

1
A =—3 kz Viae < 0Ly > (22)

but the < 01y > is now given by the expression
< o0 >= (P — Py))Aw /B (23)
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and thus the gap equation becomes

Ak ==Y Vi (PS)) = Pie)Aw /2B (24)
k/

We therefore need to calculate the quantities Pg;), Pg;). (Since the states |10 > and
|01 > are fairly obviously degenerate, we clearly must have ng + ng + 2Pg§3 =1).

Since we are talking about different occupation states, there is no question of Fermi or
Bose statistics, and the probability of occupation of a given state is simply proportional to
exp —fE, (8 = 1/kgT) where E, is the energy of the state.

Thus,

ng ; P](Blg : ng =exp —f[FEqgp : exp—LBEgp : exp—[FEgp (25)
we already know that Egpp — Egp = 2Ey, (but Ex = Ex(T)!). What is Egp — Egp? Here
care is needed in accounting. If all (MB) energies are taken relative to the normal-state F'.
sea, then evidently the energy of the “broken pair” states |01 > or |10 > is € (which can
be negative!). In writing down the Anderson pseudospin Hamiltonian, however, we omitted
the constant term ), ex. Hence the energy of the GP state relative to the normal F. sea is

not —Fy but e — Fy. Hence, we have

Egp — EGP = by (26)
Epp — Egp = 2Ex

Hence tempting to think of BP states |10 > and |01 > as excitations of a “quasi-particle”

and the EP state as involving excitations of 2 “quasiparticles.” (Formalized in Bogoliubov

transformation:
5 = Uy, — Vil (27)
etc. Return to this below)
Anyway, this gives!
Pg;) : Pg}), : Pg;) =1:exp—pEx : exp —20Fx (28)
and .
1—e" k
P — Pl — : — tanh(8Fy/2) (29)

1+ 2e BBk + ¢—28Ek

INote that in the normal state, where “GP” is simply |11 > for ¢ < 0 and |00 > for € > 0, this gives
for ex > 0 < ny >= 2(Prp + Pp) = 2/(e’% + 1), and similarly for ¢ < 0, i.e. the correct single-particle
Fermi statistics.



Therefore, the finite-T BCS gap equation is:

Ak = — Zk’ ka/ZATl;// tanh BEk’/Q (30)

[Note: Also possible to derive by brute-force minimization of free energy as F(Ay), see e.g.
AJL app. 5D] This may or may not have (one or more) nontrivial solutions, depending on
form of Viqe and value of T', see below.

Finite-T values of < ny > and Fy : Fx is simply reduced by factor tanh SEy /2. < ny >
is given by a more complicated expression which correctly reduces to the Fermi distribution
for A — 0, T finite.

Alternative approach in terms of Bogoliubov quasiparticle operators:

Consider the operators o defined by (*)

+ — . o+ x
Q. = ukay, — ovga_k o, and H.C. (31)

so that inverse transformation is:

+ +
a = ukoy + ovka_k o (32)

It may be easily verified that the operators ay, satisfy the same fermion A.C. relations as

the axo, namely,
[Oékm Oélt/g/} = Oxk/ 0o (33)

It is also straightforward to verify that?

0| GP >= 0, o |GP >= |10 >, oy |GP >= |01 > (34)

oqaly |GP >=|EP >

Hence the oy ’s effectively create independent quasiparticles—EP states can be regarded
as two independent excited quasiparticles corresponding to k T and —k |.

Since Egp — Egp = Ex and Egp — Eqgp = 2FEy, we can write the Hamiltonian in the
form

H = const + Z Fxoy aye, (35)
ko
At finite T the QP’s will satisfy the standard Fermi distribution (but with g = 0, since

they can be created and destroyed):

ngp(k) = (exp AEi + 1) (36)

2Here it is essential to remember that |11 > is defined as ali'TaJ_rk 1100 >, not a’y ial‘tT\OO > [sign change].
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We see that the quantity (a0l ) = (a_rjary)* = F is given by

(aaty ) = weog(ohong — agaly ) + terms with no e.v. (37)
= ui(ny — (1 = i) = v (1 — 2nye)

= uyvy, tanh fEy /2, as previously.

[cf. p. 5.6, foot, for sign +c.c.!]
Note: a Bogoliubov quasiparticle doesn’t carry unit particle number, since []\7 o ] #

const. o, but does carry unit spin ([S,a;f | = oal).

Properties of BCS gap equation (eqn. (30))

(1) Independently of form of Vi, equation always has trivial solution Ax = 0 (N state)

(2) If Vie =V, > 0, no (nontrivial) solution (cf. below).

(3) for T' — oo, no nontrivial solution.

[reduces to — >, Viaw Al = kT Ay, and —Vige must have maximum eigenvalue.]
Hence, if 4 nontrivial solution at 7" = 0, must 3 critical temperature T, at which this solution
vanishes.

(4)Reduction to BCS form?® (Vqe = —V, = const with cutoff).

Possible if and only if typical energy range over which Vi changes appreciably is > A(0),
which as we can verify, is > T for T' < T, [self-consistent solution using BCS form]. If so,
define €. > A, T so that for €, within €. Viqe = independent of €, and write BCS equation

in symbolic matrix form

A=-VQA=-V(P + P,)QA (+) (38)
where
Q = 5kk’ : (tanh ﬁEk//Z)/QEk/ (39)

P, projects out states |ex| > €, and P, states < €, (so P, + P, = 1). (+) can be rearranged

to give o R
P,QA JPN- .
(1+PQV) 1+ PQV

i.e. t sums over multiple scatterings outside “shell”. Crucial point: since all states outside

shell by hypothesis have || > A, T the factor Q occurring in # is essentially e /2|e| and

3The ensuing argument implicitly assumes that Vi is not a strong function of the directions of kk'. If
it is, non-s-wave solutions may be possible (cf. part 2 of course).



hence ¢ depends neither on A nor on T, but is just some fixed operator which is a sort of
“effective potential within shell.” Moreover, by hypothesis, ty is practically constant, ~ o,
within shell. Hence gap equation becomes (putting to = —Vj)

tanh S Fy /2
Ay =~V Z Ak/M (41)

2FEy
k|| Eys|<ec

This is exactly the equation originally obtained by BCS, who assumed Vjgs = const = Vj
within shell |eg|, |ew| < €., otherwise zero. Note one can show that solution of equation
doesn’t depend on arbitrary cutoff energy €. (V5 scales so as to cancel this).

(5)Solution of BCS model: (eqn. (41))

Rewrite using Y, — N(0) [ de N(0) = 3(%) and put Ax = const. = A

c hBE/2
Ao / (anhBB2 ) o CNOe(= 12TV (0), B = (& + AP
0 E de
(42)
[Factor of 2 cancelled by f—egc de — 2 [ de]
Obvious that no solution exists for V5 > 0. For V < 0:

Critical temperature: put 8 = 8., A — 0, hence E — |e|:

A= / “tanh(Bee/2) b1 (1144,e) (43)
0 €

= kpT. = 1.14e.exp —\"' = 114, exp —1/N(0)|Vg|

This expression is insensitive to arbitrary cutoff energy €. since |[Vy| ~ const + Ine,., i.e.
cancels dependence. So, plausible to take value €. ~ wp, (as in original BCS paper): since
wp ~ M2 predicts T, ~ M~Y? and helps to explain isotope effect. Also, assures self-
consistency since experimentally, T, < €.

Zero-T solution:

S de = sinh ™' (e = In(2e
Wt [ = s e/ 0) = 2k A0) (44

= A(0) = 2¢e.exp—1/\ = 1.75T, (1.75 = 2/1.14)

Since A(0) measured in tunneling experiments (Lecture 7), can compare with experiment.
Usually works quite well, but for “strong-coupling” superconductors where T,/e. not very
small, A(0)/kpT. usually somewhat > 1.75.

At finite temperature, T' < T, gap equation can be written
/ {tanh SE(T)/E(T) — tanh .€/€e} de = 0 (45)
0
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and [ extended to oo (since it converges)
= A(T)is of form (46)
A(T)/A0) = f(T/T)
(Or equivalently A(T) = kT.f(T/T,)). Roughly,
A(T)/A(0) = (1= (T/T)")"2, (47)

Near T, exact results obtainable, cf. below:

A~ LA =T/T)?  or A(T)/kT.~3-06(1—T/T.)"?

(6)Back to the question of the Fock term

We earlier neglected the Fock term in the energy, namely,
1
H — uN > pocr= —3 1; Vi (Mo ) (Micrr) (48)

This is equivalent to a shift in the single particle energy:

€x — € — Z Vi (nie) (assuming (ny,) independent of o) (49)
k/

and in general this depends on A. We have seen that crudely speaking, (ny) is smeared out
away from its N-state value in the S state over an order ~ A, and moreover the smearing is
symmetric around the Fermi surface*. Thus, if Vi is approximately constant over e > A,
the renormalization of €y is the same in the N and S states and has no effect on the energetics
of the transition.

(7) Generalizations of BCS

(a) Sommerfeld — Bloch: = A may be f(11), but qualitatively unchanged.

(b) Landau Fermi-liquid: to the extent, Z|k| < nyx > unchanged on going from N to
S, the “polarizations” which bring the molecular field terms into play do not occur = only
effect is m — mx*: molecular-field terms do not affect the gap equation. But they do affect
the responses, just as in the normal state. (cf. Lecture 8.)

(c¢) Coulomb long-range terms: have no effect on gap equation, do affect the responses.

(d) Strong coupling: crudely speaking, effects which vanish for A/wp — 0. (e.g. ap-
proximation of constant renormalized V not exact). Need much more complicated treat-

ment(Eliashberg). Generally speaking, this treatment provides only fairly small corrections

4Argument may fail in presence of severe particle-hole asymmetry: even if A itself is constant, may lead
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to “naive” BCS. (e.g. ratio (A(0)/kpT.), 1.75 in naive BCS, can be as large as 2.4 (Hg,
Pb)).
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