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Problem Sheet 1 – Phys 598SC1 – Fall 2018 Department of Physics, UIUC

Problem Sheet 1

Note: No credit will be given for strings of algebra unaccom-
panied by adequate explanation, even if the final result is correct.

1. Superconducting levitation.

Note: To obtain the exact magnetic be-
havior in these levitation experiments would
require a quite complicated calculation. How-
ever, in this problem you are mainly asked
for order-of-magnitude estimates, and
to obtain these it is legitimate (though not
obviously so!) to assume that the order of
magnitude of the magnetic field in the vicin-
ity of the pellet when it is partly or wholly
in the superconducting phase is not grossly
different from what it would be were it (the
pellet) in the normal phase.

1. Consider the demonstration of mag-
netic levitation which you witnessed in lecture 2. Let’s take the radius a
of the YBCO pellet to be 1 cm., its thickness t to be 5 mm, the mass of
the permalloy magnet to be 50 mg and the height h at which it floats at
the boiling temperature of liquid nitrogen (77K) to be 2 mm. (these are my
best ”eyeball” guesses).

(a) From these data,find a rigorous lower limit on the condensation energy
of YBCO at 77K.∗ Assuming that the behavior of the specific heat of
YBCO as a function of temperature is similar to that of the classic
superconductor, estimate a lower limit on the condensation energy at
T = 0.

(b) Using the known properties of permalloy (you may need to look these
up) make a rough estimate of the maximum magnetic field which the

∗You may assume that both YBCO in the normal phase and the substrate are non-
magnetic. Hint: any distortion of the magnetic field lines away from their free-space form
will cost a positive energy.
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suspended magnet would exert on any part of the pellet were the latter
entirely in the normal phase.

(c) Given that the (c-axis) lower critical field of YBCO at 77K is about
20 mT and its upper critical field about 30 T (ballpark estimates), is
the bulk of the pellet likely to be in the Meissner state,the mixed state
or the normal state?

(d) Make a very rough estimate of the number of vortices penetrating the
pellet, and of their ”typical” mutual spacing.

(e) Now consider the sumo wrestler Tosanoumi. While it isn’t very clear
from the picture, let’s assume he is standing on a permalloy slab of
area 0.1m2, suspended above an YBCO plate of equal area and above
1 cm thickness; we are told that the combined weight of Tosanoumi
and the permalloy slab is approximately 200 kg.

Repeat the calculation of part (a) so as to obtain a second rigorous
lower limit on the condensation energy of YBCO at 77 K. Look up
the actual value of the condensate energy density of YBCO as directly
measured and compare with the values you have calculated.

(f) )(optional,for bonus points): Can you suggest (a) reason(s) why the
numbers calculated in parts (a) and (e) are so different (if they are)
from one another and from the experimental value?

2. Nonlocal electrodynamics of normal metals.

Consider the dynamics of the conduction electrons in a metal in a situa-
tion where the (local) electric field E(r, t) varies in both space and time.
Let δn(p, r : t) be the deviation of the semiclassical distribution function
n(p, r : t) from its thermal equilibrium form f0(εp) where f0(ε) is the Fermi
function.† The linearized Boltzmann kinetic equation may be taken for our
purposes to be of the form

∂

∂t
δn(r,p : t) = −vp ·∇δn(r,p : t)− e

[
∂f0
∂εp

]
vp ·E(r, t)− δn(r,p : t)

τ
(1)

where vp ≡ p/m and τ is a phenomenological collision time.

†Assume that kBT � εF so that the usual expansion around the Fermi energy is
justified.
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(a) Show that the solution of this equation, up to additive transients, is
of the form

δn(r,p : t) = −e ∂f0
∂εp

∫ t

−∞
dt′ v ·E

(
r−vp(t−t′), t′

)
exp−(t−t′)/τ (2)

and interpret this result physically. Hence, obtain an expression for
the electric current j(r, t) in terms of E(r′, t′).

(b) Consider the case of a sinusoidally varying local field,

E(r, t) = E0(r) exp−iωt (3)

By introducing the variable r′(p, t− t′) ≡ r−vp(t− t′), show that the
Fourier transform j(r, ω) of the current can be written in the Chambers
form‡

j(r, ω) = e2
[
dn

dε

]
vF
4π

∫
dr′

R
(
R · E0(r

′)
)

R4
exp−iωR/vF exp−R/l

(4)
where R is a shorthand for r− r′, vF is the Fermi velocity, dn/dε the
density of states (of both spins) at the Fermi surface and l ≡ vFτ the
mean free path. ”Note: you may need to use various prescriptions,
e.g. for converting sums over p into integrals over energy and angle,
etc. You should have met these in your basic solid state course, but if
not, look them up in some standard text.

(c) Show that in the limit where E0(r) is slowly varying over distances of
the order of both ` and vF/ω ≡ λω, the Chambers formula reduces to
the ‘local’ form

j(r, ω) = σ(ω)E(r, ω) (5)

where the conductivity σ(ω) is given by the Drude expression:

σ(ω) =
1

3
e2vFl

dn

dε

1

1 + iωτ
=
ne2τ

m

1

1 + iωτ
(6)

where the last expression is valid for a free-electron gas (Sommerfeld
model). Use this result to rewrite the prefactor in the Chambers for-
mula in terms of the plasma frequency (0).

‡You may assume without proof that the correct prescription for the transformation
from the integrals over t′ and the direction of p to that over r−r′ is given by

∫
dt′

∫
dΩp →∫ d(r−r′)

vF|r−r′|2
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(d) By combining Chambers’ equation with Maxwell’s equations, show
that the problem of penetration of a (transverse) EM field into the
metal is determined, in the limit where the free-space wave length
2πc/ω is long compared to everything else in the problem, by three
characteristic lengths, namely the quantities l and λω and the ‘high-
frequency skin depth’ δ0 ≡ (m/ne2µ0)

1/2 (≡ λL(0) if the system be-
comes superconducting). By a self-consistent dimensional argument,
or otherwise, find the dependence (apart from numerical factions of
the actual penetration depth δ(ω) on l, λω and δ0 in the limits (i)
λω � δ0 � l and (ii) l � λω � δ0. Hint: Assume that the field falls
off as exp δ(ω) ∗ z where δ(ω) may be complex, and that if so the real
part of the exponent is at least comparable in order of magnitude to
the imaginary part. It may help your intuition to look, on the way to
case (ii), at the case l � δ0 � λω.

3. Meissner effect and flux quantization

Consider a thin metallic ring of radius

R

r

Aθ

θR and circular cross-section πr2. For sim-
plicity (only) we will assume r � R and
neglect any terms of higher order than ze-
roth in r/R. We apply to it an external flux
Φext such that the vector potential Aext is
everywhere in the tangential direction and
equal to Φext/2πR (cf. above). The effect
is to replace the tangential component of
momentum, pθ, by (pθ − eAθ), in both the
Hamiltonian and the expression for the elec-
tric current.

(a) ) By an appropriate transformation of variables, show that in classi-
cal equilibrium statistical mechanics no tangential current is induced.
(Bohr-van Leeuwen theorem.)

(b) In general, a current may be induced, and will then produce an ‘in-
duced’ flux Φind which will add to the external one Φext. Show that for
r � λL(T ) Φind is negligible compared to Φext provided the London
equation is obeyed, and thus A may be taken constant and equal to
Aext.

(c) Consider the general quantum-mechanical case: write down the time-
independent Schrödinger equation for the many-body system and state
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the boundary conditions which the wave functions must satisfy. By
making an appropriate transformation on the wave function, show that
the free energy must be periodic in Φext with a periodicity φ̃0 = h/e,
i.e. F (Φ + nφ̃0) = F (Φ).

[Note that this result, which is quite generic, is entirely compatible
with (a) F (Φ) = const. (i.e. independent of Φ) and (b) F (Φ) = periodic
in some submultiple of φ̃0, e.g. h/2e.]

(d) Consider a system of noninteracting QM particles in the above
geometry in the presence of external flux Φ ext. Solve the time-
independent Schroedinger equation for the tangential motion and write
down expressions, for each level n, for the wave function, the energy
and the expectation value of the tangential current.

Hence find an expression for the total tangential current in terms of
the thermal occupation factors fn. Assuming that the replacement∑

n fn →
∫
f(n) dn is valid provided |fn+1− fn| � fn, find the condi-

tion in terms of the radius R of the annulus,the mass m of the particles
and the temperature, for the Bohr-van Leeuwen theorem to be approx-
imately satisfied in this (quantum) case, assuming classical (Gibbs)
statistics.§

Now consider the case of a Bose system below its transition tempera-
ture, so that a macroscopic fraction f0(T ) of all particles must occupy
the lowest energy single-particle state. Show that under these condi-
tions the Bohr-van Leeuwen theorem is not satisfied and sketch the
form of free energy and the current as a function of Φ → Φext. Show
in particular that for Φ → Φext � φ̃0/2 the current is given by the
London equation, with the superfluid fraction ns(T )/n equal to f0(T ).

Solutions to be put in 598sc homework box (2nd floor Loomis) by 9
a.m. on Mon. 17 Sept.

§i.e. that the probability of the occupation of a given single particle state is proportional
to exp−βEn where En is the energy of the state.
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