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1. – Introduction

We give a brief overview of nonequilibrium Green function theory and some connec-

tions with time-dependent density functional theory (TDDFT). We will focus on how

to obtain approximations that satisfy the conservation laws. The account given here is

not meant to be comprehensive but tries to put in logical order the main arguments and

results that are sometimes found scattered in the literature.

2. – Nonequilibrium Green function theory

2
.
1. The action functional . – We will study a system of interacting electrons in a time-

dependent external potential v(r, t) and vector potential A(r, t), such that the single-

particle part of the Hamiltonian is

(1) h0(r, t) =
1

2
[−i∇ + A(r, t)]

2
+ v(r, t) − µ.

We use atomic units ~ = m = e = 1. In the following, we are mainly interested in

systems that evolve from an equilibrium state at some time t0, a choice which is reflected

in the inclusion of the chemical potential µ in h0. Most of the theory can be generalized

to much more general initial conditions, but this is a topic that deserves a more thorough
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discusssion [1, 2, 3]. The total Hamiltonian is written in second-quantization as

(2) Ĥ(t) =

∫

dx ψ̂†(x)h0(r, t)ψ̂(x)+
1

2

∫ ∫

dx1dx2 ψ̂
†(x1)ψ̂

†(x2)
1

|r1 − r2|
ψ̂(x2)ψ̂(x1),

where we use the notation x = (r, σ) and dx denotes integration over r as well as a

summation over the spin indices. We will now define an action which will be used

as a generating functional for our observables. To motivate our definition we consider

the expectation value of an operator Ô for the case that the system is initially in an

equilibrium state before a certain time t0. For t < t0 the expectation value of operator Ô

in the Schrödinger picture is then given by 〈Ô〉 = Tr {ρ̂Ô} where ρ̂ = e−βĤ0/Tr e−βĤ0

is the density matrix and Ĥ0 is the time-independent Hamiltonian that describes the

system before the perturbation is switched on. We further defined β = 1/kBT to be the

inverse temperature, and the trace involves a summation over a complete set of states in

the Hilbert space. After we switch on the field the expectation value becomes

(3) 〈Ô(t)〉 = Tr
{

ρ̂ÔH(t)
}

where ÔH(t) = Û(t0, t)Ô(t)Û(t, t0) is the operator in the Heisenberg picture. The evo-

lution operator Û of the system is defined as the solution to the equations

(4) i∂tÛ(t, t′) = Ĥ(t)Û(t, t′) i∂t′Û(t, t′) = −Û(t, t′)Ĥ(t′)

with the boundary condition Û(t, t) = 1 . The formal solution of Eq. (4) can be obtained

by integration to yield Û(t, t′) = T exp (−i
∫ t

t′
dτĤ(τ)). The operator e−βĤ0 can now be

regarded as an evolution operator in imaginary time, i.e. Û(t0 − iβ, t0) = e−βĤ0 , if we

define Ĥ(t) to be equal to Ĥ0 on the contour running straight from t0 to t0 − iβ in the

complex time plane. We can therefore rewrite our expression for the expectation value

as

(5) 〈Ô(t)〉 =
Tr

{

Û(t0 − iβ, t0)Û(t0, t) Ô Û(t, t0)
}

Tr
{

Û(t0 − iβ, t0)
}

If we read the time arguments of the evolution operators in the numerator of this expres-

sion from left to right we may say that the system evolves from t0 along the real time

axis to t after which the operator Ô acts. Then the system evolves back along the real

axis from time t to t0 and finally parallel to the imaginary axis from t0 to t0 − iβ. A

corresponding contour is displayed in Fig. 1. This observation motivates us to define the

following action functional (compare with the action functionals used in Refs.[4, 5])

(6) S = − ln Tr
{

Û(t0 − iβ, t0)
}

,
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where we define the evolution operator on the contour as

(7) Û(t0 − iβ, t0) = TC exp(−i

∫

dtĤ(t)).

Here the integral is taken on the contour and TC denotes time-ordering along the contour

of Fig.1. For instance, time t1 in Fig. 1 is later than time t2 on the contour. Let us now

see how this functional can be used as a generating functional by making variations with

respect to parameters in the Hamiltonian. To do this one needs to consider changes in

Û which are readily evaluated using Eq.(4). For instance, when we make a perturbation

δV̂ (t) in the Hamiltonian we have using Eq.(4)

(8) i∂t δÛ(t, t′) = δV̂ (t)Û(t, t′) + Ĥ(t)δU(t, t′)

with a similar differential equation with respect to t′ and boundary condition δÛ(t, t) = 0.

The solution to this equation is given by

(9) δÛ(t, t′) = −i

∫ t

t′
dτÛ(t, τ)δV̂ (τ)U(τ, t′)

from which variations in the action can be calculated. For instance, if we choose

δV̂ (t) =
∫

dxδv(xt)n̂(x) where n̂(x) = ψ̂†(x)ψ̂(x) is the density operator we obtain

the expectation value of the density as 〈n̂(xt)〉 = iδS/δv(xt). More general expectation

values can be obtained if we, as a formal device, add a time-dependent, nonlocal pertur-

bation u(1, 2) to the exponent in Eq. (7) which in our final equations will be set to zero.

We define [4]

(10) Û(t0 − iβ, t0) = TC exp

[

−i

∫

dt Ĥ(t) − i

∫

d1

∫

d2 ψ̂†(x1)u(1, 2)ψ̂(x2)

]

where we used the compact notation 1 = (x1, t1). We define the one-particle Green’s

function G as the functional derivative of S with respect to the nonlocal perturbation u,

i.e.

G(1, 2) =
δS

δu(2, 1)

∣

∣

∣

∣

u=0

=
1

i

Tr
{

Û(t0 − iβ, t0)TC

[

ψ̂H(1)ψ̂†
H(2)

]}

Tr
{

Û(t0 − iβ, t0)
}

= −i〈TC [ψ̂H(1)ψ̂†
H(2)]〉,(11)

This Green function is thus defined for time-arguments on the contour. Such contour

Green functions were first introduced by Keldysh [6] and are often denoted as Keldysh

Green functions [1, 7, 8]. Let us now illustrate the effect of contour ordering by consid-

ering the situation in Fig. 1. In the figure, t1 is later on the contour than t2 and hence

U(t0 − iβ, t0)TC [ψ̂H(1)ψ̂†
H(2)] = U(t0 − iβ, t1)ψ̂(x1)U(t1, t2)ψ̂

†(x2)U(t2, t0). Let us now
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(t0,−iβ)

t0
t2

t1

-

6

Fig. 1. – Keldysh contour. The forward and backward parts of the contour are on the real axis
but are plotted slightly off this axis to display the two branches more clearly.

derive the boundary conditions that G satisfies. If we consider the Green function at

t1 = t0 − iβ and use the cyclic property of the trace we find

G(x1t0 − iβ, 2) =
1

i

Tr
{

ψ̂(x1)Û(t0 − iβ, t2)ψ̂
†(x2)Û(t2, t0)

}

Tr
{

Û(t0 − iβ, t0)
}

=
1

i

Tr
{

Û(t0 − iβ, t2)ψ̂
†(x2)Û(t2, t0)ψ̂(x1)

}

Tr
{

Û(t0 − iβ, t0)
} = −G(x1t0, 2).(12)

The Green function defined in Eq. (11) therefore obeys the boundary conditionG(x1t0, 2) =

−G(x1t0 − iβ, t2). The property G(1,x2t0) = −G(1,x2t0 − iβ) for the other argument

is likewise easily verified. These boundary conditions are sometimes referred to as the

Kubo-Martin-Schwinger conditions [9, 10, 2]. Similar boundary conditions are satisfied

by the usual equilibrium temperature Green function which, in fact, is obtained for the

special case where the time arguments are located on the contour along the imaginary

axis t0 to t0 − iβ, where the Hamiltonian is time-independent.

Higher-order Green functions can now be generated by higher-order differentiation of

the action. For instance the second derivative of the action functional defines the linear

transport coefficient L,

(13)
δG(1, 2)

δu(4, 3)

∣

∣

∣

∣

u=0

= −G2(1, 3, 4, 2) +G(1, 2)G(3, 4) = −L(1, 3, 4, 2),

where the two-particle Green function is defined according to

(14) G2(1, 2, 3, 4) =
1

i2

Tr
{

Û(t0 − iβ, t0)TC

[

ψ̂H(1)ψ̂H(2)ψ̂†
H(3)ψ̂†

H(4)
]}

Tr
{

Û(t0 − iβ, t0)
} .
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and satisfies similar boundary conditions as the one-particle Green function. The Green

function G is a basic ingredient in a diagrammatic perturbation expansion and it directly

gives us the expectation values of one-particle operators. For instance, if we denote by

1+ the limit to t1 from above on the contour, the density is quite simply

(15) 〈n̂(1)〉 = −iG(1, 1+)

and the current density is

(16) 〈j(1)〉 = −i

{[

∇1

2i
−

∇1′

2i
+ A(1)

]

G(1, 1′)

}

1′=1+

The calculated observables will obviously depend on what approximation scheme we

use to obtain G. It is therefore important that these approximations are such that the

calculated observables satisfy the macroscopic conservation laws, like e.g. the continuity

equation, ∂t〈n̂〉 = −∇ · 〈j〉. Such approximations are called conserving approximations

and are the main topic of this presentation.

2
.
2. The Kadanoff-Baym equations. – We now study the equation of motion for the

Green function. For this purpose, we introduce the functions G> and G< according to

G>(1, 1′) = −i〈ψ̂H(1)ψ̂†
H(1′)〉(17)

G<(1, 1′) = i〈ψ̂†
H(1′)ψ̂H(1)〉(18)

such that we can write

(19) G(1, 1′) = θ(t1, t1′)G>(1, 1′) + θ(t1′ , t1)G
<(1, 1′).

Here we use the step function θ generalized to arguments on the contour [1],

(20) θ(t1, t1′) =

{

1

0

if t1 is later than t1′ on the contour

otherwise

Using the definition of operators in the Heisenberg picture, and the Hamiltonian as given

in Eq. (2), the equation of motion for the annihilation operator is

i∂t1 ψ̂H(1) = [ψ̂H(1), ĤH(t1)]

=

[

h0(1) +

∫

d2 ψ̂†
H(2)w(2, 1)ψ̂H(2)

]

ψ̂H(1)(21)

where w(1, 2) = δ(t1, t2)/|r1−r2| is the Coulomb interaction. The notation δ(t1, t2) again

indicates that the time-arguments are on the contour. Using this equation one obtains

(22) [i∂t1 − h0(1)]G(1, 1′) = δ(1, 1′) − i

∫

d2w(1, 2)G2(1, 2, 2
+, 1′).
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where δ(1, 1′) = δ(x1 − x′
1)δ(t1, t1′). The problem is that the equation of motion for

G depends on the two-particle Green function G2. Instead of propagating the equation

with some approximate form of G2, we introduce the electronic self energy M , such that

the term −iG2w is replaced with MG. If we introduce the inverse of the noninteracting

Green function as G−1
0 (1, 2) = [i∂t1 − h0(1)]δ(1, 2) the equation of motion becomes

(23)

∫

d3G−1
0 (1, 3)G(3, 2) = δ(1, 2) +

∫

d3M(1, 3)G(3, 2).

Note that the integral over the t3 variable goes along the entire contour. By multiplication

with G from the left and G−1 from the right the adjoint equation

(24)

∫

d3G(1, 3)G−1
0 (3, 2) = δ(1, 2) +

∫

d3G(1, 3)M(3, 2)

follows directly. The self-energy is a functional of the one-particle Green function, and

as a consequence, Eqs. (23) and (24) constitute a set of equations that should be solved

to self-consistency once the functional dependence of M on G is known. To generate a

set of self-consistent equations we note that if we use Eq.(9) we can write Eq.(22) as [11]

(25) [i∂t1 − h0(1) − vH(1)]G(1, 1′) = δ(1, 1′) + i

∫

d2w(1+, 2)
δG(1, 1′)

δv(2)
.

where the potential v is the external potential in the single-particle part h0 of the Hamilto-

nian and the Hartree potential vH is defined as vH(1) =
∫

w(1, 2)n(2). If we differentiate

the definition of the inverse Green function

(26)

∫

d3G−1(1, 3)G(3, 2) = δ(1, 2)

with respect to v we obtain the identity

(27)

∫

d3G−1(1, 3)
δG(3, 2)

δv(4)
= −

∫

d3
δG−1(1, 3)

δv(4)
G(3, 2)

If we solve this equation for δG/δv we obtain

(28)
δG(1, 2)

δv(3)
= −

∫

d4d5G(1, 4)
δG−1(4, 5)

δv(3)
G(5, 2)

Note that if we add a function C to the rhs of Eq.(28) that satisfies G−1C = 0 we obtain

another solution to Eq.(27). However, since our system is initially in equilibrium we can

deduce from the boundary conditions on G that C must be zero. For more general initial

states C will be nonzero and account for initial correlations [8, 2, 3]. With Eq.(28) we

see that we can write M as

(29) M(1, 2) = i

∫

d3d4G(1, 3)w(1+, 4)Γ(32; 4) − iδ(1, 2)

∫

d3w(1, 3)G(3, 3+)
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where we defined the vertex function Γ as

(30) Γ(12; 3) = −
δG−1(1, 2)

δv(3)

Since G−1 = G−1
0 −M , Eq.(30) implies immediately that

Γ(12; 3) = δ(1, 2)δ(1, 3) +

∫

d4d5
δM(1, 2)

δG(4, 5)

δG(4, 5)

δv(3)

= δ(1, 2)δ(1, 3) +

∫

d4d5d6d7
δM(1, 2)

δG(4, 5)
G(4, 6)G(7, 5)Γ(67; 3)(31)

We have therefore obtained the following set of self-consistent equations

0 = [i∂t1 − h0(1)]G(1, 1′) − δ(1, 1′) −

∫

d2M(1, 2)G(2, 1′)(32)

M(1, 2) = i

∫

d3d4G(1, 3)w(1+, 4)Γ(32; 4) − iδ(1, 2)

∫

d3w(1, 3)G(3, 3+)(33)

Γ(12; 3) = δ(1, 2)δ(1, 3) +

∫

d4d5d6d7
δM(1, 2)

δG(4, 5)
G(4, 6)G(7, 5)Γ(67; 3)(34)

These equations can now be iterated to obtain self-consistent equations for the Green

function. For instance, if we take the simplest approximation for the vertex, namely

Γ(12; 3) = δ(1, 2)δ(1, 3), and insert it into Eq.(33) we obtain

(35) M(1, 2) = iG(1, 2)w(1+, 2) − iδ(1, 2)

∫

d3w(1, 3)G(3, 3+)

This is the so-called Hartree-Fock approximation to M and will in the following be

denoted as ΣHF . By inserting this expression into Eq.(34) we obtain a new approximation

for the vertex from which one can obtain a new self-energy. As one can readily convince

oneself the time-local part (i.e. proportional to δ(t1, t2) ) of M is only given by ΣHF . It

is therefore convenient to single out the Hartree-Fock part of the self-energy, such that [1]

(36) M(1, 2) = ΣHF(1, 2) + θ(t1, t2)Σ
>(1, 2) + θ(t2, t1)Σ

<(1, 2)

It will often also be convenient to extract only the Hartree potential from M . We will

therefore define Σ = M − vH . Using Eq.(36) we transform the contour integration to

obtain:

[i∂t1 − h0(1)]G
≶(1, 2) −

∫

dx3 ΣHF(1,x3t1)G
≶(x3t1, 2) =

=

∫ t1

t0

d3
[

Σ>(1, 3) − Σ<(1, 3)
]

G≶(3, 2) −

∫ t2

t0

d3Σ≶(1, 2)
[

G>(3, 2) −G<(3, 2)
]

+

∫ t0−iβ

t0

d3G<(1, 3)Σ>(3, 2)(37)
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The integration of the adjoint Eq. (24) can be done in exactly the same way, with the

result

[−i∂t2 − h∗0(2)]G
≶(1, 2) −

∫

dx3 ΣHF(1,x3t2)G
≶(x3t1, 2) =

=

∫ t1

t0

d3
[

G>(1, 3) −G<(1, 3)
]

Σ≶(3, 2) −

∫ t2

t0

d3G≶(1, 3)
[

Σ>(3, 2) − Σ<(3, 2)
]

+

∫ t0−iβ

t0

d3G>(1, 3)Σ>(3, 2).(38)

The Eqs. (37) and (38) are known as the Kadanoff-Baym equations [12, 2, 8]. For a

given approximation of Σ[G] these equations can solved by time-propagation. Since we

have two first order equations in time one needs two conditions to determine the solution

uniquely. These conditions are precisely the Kubo-Martin-Schwinger conditions derived

above. In practice the equations are first solved on the contour from t0 to t0−iβ parallel to

the imaginary axis which amounts to a solution of the stationary problem. The functions

such obtained can then be used as starting values for the real time propagation [13, 14, 15]

2
.
3. Conserving approximations. – We will now discuss how to construct conserving

approximations [16, 4]. We start from Eq.(13) and write

L(1, 2, 2′, 1′) = −
δG(1, 1′)

δu(2′, 2)
=

∫

d3d3′G(1, 3)
δG−1(3, 3′)

δu(2′, 2)
G(3′, 1′)

= −G(1, 2′)G(2, 1′) +

∫

d3d3′d4d4′G(1, 3)
δM(3, 3′)

δG(4′, 4)
L(4′, 2, 2′, 4)G(3′, 1′)

= L0(1, 2, 2
′, 1′) −

∫

d3d3′d4d4′ L0(1, 3
′, 3, 1′)γ(3, 4, 4′, 3′)L(4′, 2, 2′, 4).(39)

where L0(1, 2, 2
′, 1′) = −G(1, 2′)G(2, 1′) and γ(1, 2, 2′, 1′) = δM(1, 1′)/δu(2′, 2). Eq.(39)

is known as the Bethe-Salpeter equation. Similarly as discussed in connection with

Eqs.(27) and (28) an extra term C satisfying G−1C = 0 may be added that accounts for

initial correlations [2]. For equilibrium initial states the term again disappears. Defining

the inverse of L, we can write Eq. (39) according to

(40) L−1(1, 2, 2′, 1′) = L−1
0 (1, 2, 2′, 1′) + γ(2′, 1′, 1, 2),

where L−1
0 (1, 2, 2′, 1′) = −G−1(2′, 1)G−1(1′, 2). Since L is symmetric under the inter-

change (1, 1′) ↔ (2, 2′), the inverse function must have the same symmetry. This means

that

(41) γ(2′, 1′, 1, 2) =
δM(2′, 2)

δG(1, 1′)
=
δM(1′, 1)

δG(2, 2′)
= γ(1′, 2′, 2, 1),

and we thus have a vanishing curl condition on M . Extracting the Hartree potential,

M = vH + Σ, we see that if the self-energy Σ is obtained from an underlying functional
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Φ = −

1

2
−

1

4
−

1

4
−

1

6

−

1

6
−

3

6
+ . . .

−iΣ = + + +

+ + + + + . . .

Fig. 2. – Some of the low-order Φ diagrams, and some of the self-energy diagrams obtained from
Σ = δΦ/δG. The prefactor of a Φ-diagram is nΣ/2n where nΣ is the number of topologically
different Σ-diagrams that can be generated from it and n is the number of interaction lines.

Φ[G], according to

(42) Σ(1, 2) =
δΦ

δG(2, 1)
,

then the function L−1 will automatically have the correct symmetry. Such a functional

Φ can be constructed, as first shown by Luttinger and Ward [17], by summing over irre-

ducible self-energy diagrams closed with an additional Green function line and multiplied

by appropriate numerical factors,

(43) Φ[G] =
∑

n,k

1

2n

∫

d1d2Σ
(n)
k (1, 2)G(2, 1+) =

∑

n,k

1

2n
tr
[

Σ
(n)
k G

]

.

The term n indicates the number of interaction lines and k labels Σ-diagrams. The

trace tr indicates an integration over all variables (in contrast to the trace Tr that

denotes a summation over a complete set of states in the Hilbert space). Some of the

low-order diagrams are shown in Fig. 2, together with some of the corresponding self-

energy diagrams. Baym [4] has proven the important result that when the self-energy is

obtained from some approximate Φ-functional, the observables calculated from G satisfy

the macroscopic conservation laws. We will describe his arguments for the number and

momentum conservation laws. If we consider a perturbing potential corresponding to a

gauge transformation A → A + ∇Λ̃, the single-particle Hamiltonian h0 is changed to

h0 = 1
2 [∇/i + A + ∇Λ̃]2 + v + ∂tΛ̃. For an arbitrary Λ̃ with the boundary condition
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Λ̃(t0) = Λ̃(t0 − iβ), it is then easily shown that the noninteracting Green function G0

transforms according to

(44) G0(1, 1
′; Λ̃) = e−iΛ̃(1)G0(1, 1

′)eiΛ̃(1′).

Due to the particle conservation at the vertices, it can be shown [4] that also Σ and G

transform like G0 in Eq. (44),

(45) G(1, 1′; Λ̃) = e−iΛ̃(1)G(1, 1′)eiΛ̃(1′).

From this relation, we see that the first-order change in G due to Λ̃ is

(46) δG(1, 1′) = −i
[

Λ̃(1) − Λ̃(1′)
]

G(1, 1′),

and the change in Φ, given by δΦ = ΣδG, is then

δΦ = i

∫

d1d1′ [Σ(1′, 1)G(1, 1′) − Σ(1, 1′)G(1′, 1)] Λ̃(1).(47)

Since there is one ingoing and one outgoing Green function at each vertex in the Φ

diagrams, the exponential factors in Eq. (45) cancel, and the gauge transformation is

hence an invariance of Φ. This is true for arbitrary Λ̃, and Eq. (47) thus leads to the

equation

(48)

∫

d1′ [Σ(1, 1′)G(1′, 1) −G(1, 1′)Σ(1′, 1)] = 0.

Subtracting the equations of motion Eqs. (23), (24), G−1
0 G−GG−1

0 , we obtain

[i∂t1 + i∂t2 ]G(1, 2)

= [h0(1) − h∗0(2)]G(1, 2) +

∫

d3 [G(1, 3)M(3, 2) −M(1, 3)G(3, 2)] .(49)

Taking the limit t2 → t+1 and using n(1) = −iG(1, 1+) and Eq.(48), we finally obtain the

result that for a Φ-derivable approximation the continuity equation

(50) ∂t1〈n(1)〉 + ∇1 · 〈j(1)〉 = 0.

is satisfied, where the current is given by Eq. (16).

Closely related to the number conservation are the so-called Ward-identities [18, 19]. To

obtain them we study the changes in the Green function induced by a gauge trans-

formation. For simplicity we will consider variations around A = 0. If we define

j(x) = [ψ̂†(x)∇ψ̂(x) − (∇ψ̂†(x))ψ̂(x)]/2i the perturbing potential is given by

(51) δV̂ (t1) =

∫

dx1(̂j(x1) · ∇1Λ̃(1) + n̂(x1)∂t1Λ̃(1))
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The change in G(1, 1′) is therefore

∫

d2

[

δG(1, 1′)

δv(2)
∂t2Λ̃(2) +

∑

µ

δG(1, 1′)

δAµ(2)
∇2,µΛ̃(2)

]

= −i
[

Λ̃(1) − Λ̃(1′)
]

G(1, 1′).(52)

It will be convenient to denote the functional derivatives of G as Λ0 and Λµ. For the

exact systems these functions can be indentified with the following time-ordered products

Λ0(11
′; 2) =

δG(1, 1′)

δv(2)
= −〈TC [ψ̂H(1)ψ̂†

H(1′)∆n̂(2)]〉(53)

Λµ(11′; 2) =
δG(1, 1′)

δAµ(2)
= −〈TC [ψ̂H(1)ψ̂†

H(1′)∆ĵµ(2)]〉(54)

where we used the notation ∆Ô = Ô − 〈Ô〉. These functions are closely related to the

vertex and the density and current response functions. An integration by parts in Eq.(52)

now leads to

−

∫

d2 Λ̃(2)

{

∂t2Λ0(11
′; 2) +

∑

µ

∇µΛ2,µ(11′; 2)

}

= −i
[

Λ̃(1) − Λ̃(1′)
]

G(1, 1′),(55)

where we have used the boundary condition Λ̃(t0) = Λ̃(t0 − iβ). Demanding that this

equation is satisfied for arbitrary Λ̃, we obtain

(56)
∂

∂t2
Λ0(11

′; 2) +
∑

µ

∇2,µΛµ(11′; 2) = i [δ(1, 2) − δ(1′, 2)]G(1, 1′).

This equation is in fact the generalized Ward identity which relates the vertex and the

self-energy. This equation can be made more explicit by defining the generalized vertex

functions

Γ0(11
′; 2) = −

δG−1(1, 1′)

δv(2)
(57)

Γµ(11′; 2) = −
δG−1(1, 1′)

δAµ(2)
(58)

The function Γ0 is the same vertex that we already introduced in Eq.(30) and which

satisfies Eq.(34) if G is solved from an equation of motion with a given Σ[G]. Using

Eq.(28) we see that for i = 0 . . . 4 the functions Λi are related to the vertex functions Γi

by

(59) Λi(11
′; 2) = −

∫

d3d4G(1, 3)G(4, 1′)Γi(34; 2).
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With Λ on this form, Eq. (56) yields an equation of motion for Γ,

(60) ∂t2Γ0(11
′; 2) +

∑

µ

∇2,µΓµ(11′; 2) = −i [δ(1′, 2) − δ(1, 2)]G−1(1, 1′).

Since G−1 = G−1
0 −M this equation relates the vertex and the self-energy and is known

as the generalized Ward identity [19]. The significance of the Ward identity is that it

implies gauge invariance and an important sum rule for the response functions. To see

this we define the following matrix of density and current response functions

(61) χij(1, 2) = −i〈TC [∆ĵi(1)∆ĵj(2)]〉

where i, j = 0 . . . 4 and we define ĵ0 = n̂. These functions can be obtained from

the equal time limit 1′ → 1+ of the functions Λi(11
′; 2) since 〈TC [∆ĵi(1)∆ĵj(2)]〉 =

〈TC [ĵi(1)∆ĵj(2)]〉. Then taking the limit 1′ → 1+ in Eq.(56) gives

(62) ∂t2χ00(1, 2) +
∑

µ

∇2,µχ0µ(1, 2) = 0.

If we on the other hand apply the operator (∇1−∇1′)/2i to Eq.(56) and then set 1′ = 1+

we find

(63) ∂t2χµ0(1, 2) +
∑

ν

∇2,νχµν(1, 2) = −n(1)∇1,µδ(1, 2)

Now the response functions χij have the structure

(64) χij(1, 2) = θ(t1, t2)χ
>
ij(1, 2) + θ(t2, t1)χ

<
ij(1, 2)

If we insert this expression into Eq.(62) and Eq.(63) we obtain the equations

χ>
00(r1t, r2t) − χ<

00(r1t, r2t) = 0(65)

χ>
µ0(r1t, r2t) − χ<

µ0(r1t, r2t) = −n(r1t)∇1,µδ(r1 − r2)(66)

∂t2χ
≶
00(1, 2) +

∑

µ

∇2,µχ
≶
0µ(1, 2) = 0(67)

∂t2χ
≶
µ0(1, 2) +

∑

ν

∇2,νχ
≶
µν(1, 2) = 0(68)

Eqs.(67) and (68) are gauge conditions on the response functions and guarantee that pure

gauges do not introduce density or current changes in the system. Eq.(66) is equivalent

to the commutator [20]

(69) 〈[ĵµ(r1t), n̂(r2t)]〉 = −in(r1t)∇1,µδ(r1 − r2) = i∇2,µ[n(r1t)δ(r1 − r2)]
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which is for the exact system also easily verified by direct evaluation. Now a combination

of Eq.(66) and Eq.(67) leads to a famous sum rule for the density-density response

function. We have

∂t2(χ
>
00(1, 2) − χ<

00(1, 2))|t1=t2 = −
∑

µ

∇2,µ(χ>
0µ(1, 2) − χ<

0µ(1, 2))|t1=t2

=
∑

µ

∇2,µ(χ>
µ0(2, 1) − χ<

µ0(2, 1))|t1=t2 =
∑

µ

∇2,µ∇1,µ(n(r2t1)δ(r1 − r2))(70)

If we consider the case that we perturb the system from an equilibrium state then the

unperturbed density n0(r) is time-independent and the response functions depend on

t1 − t2 and can be Fourier transformed with respect to t1 − t2. We define the retarded

response function as

(71) χ00,R(1, 2) = θ(t1 − t2)(χ
>
00(1, 2) − χ<

00(1, 2))

where θ is the usual Heaviside function (i.e. not the contour one). Then Eq.(70) implies

(see Appendix) in frequency space that

(72)

∫ +∞

−∞

dω ωχ00,R(r1, r2;ω) = −iπ
∑

µ

∇2,µ∇1,µ(n0(r2)δ(r1 − r2))

This equation is known as the frequency or f -sum rule. Satisfaction of this sumrule

has been checked numerically by Kwong and Bonitz [21]. They solved for the electron

gas the Kadanoff-Baym equations for a conserving approximation in the presence of a

time-dependent field and calculated the changes in G. By dividing out the applied field,

which amounts to taking the derivative δG/δv, they obtained the response function. The

f -sum rule was found to be satisfied to high numerical accuracy. This technique has also

the important practical advantage that it avoids solving a complicated equation for the

vertex.

2
.
4. Momentum conservation. – To derive the momentum conservation law we follow

Baym [4] and consider a system as viewed by a moving observer at postion r′ = r−R(t).

with the boundary condition R(t0) = R(t0 − iβ). The one-body part of the Hamiltonian

as viewed from a moving frame is then given by

(73) h̃0(r
′t;R) = −

1

2
(−i∇′ + A(r′ + R(t), t))2 + i∂tR(t) · ∇′ + v(r′ + R(t), t)

In the moving frame the solution for the equation of motion for G0

(74) (i∂t − h̃0(1;R))G0(1, 1
′;R) = δ(1, 1′)

is given by

(75) G0(r1t1, r
′
1t

′
1;R) = G0(r1 + R(t1), t1, r

′
1 + R(t′1), t

′
1;R = 0)



14 Robert van Leeuwen and Nils Erik Dahlen

as can be directly checked by insertion into the equation of motion and verification

of the boundary conditions. The same transformation law applies to G. This follows

immediately from a diagrammatic expansion of G since the Coulomb interaction is local

in time and depends only on the difference between the spatial coordinates and therefore

the integrals over all space at the vertices are not changed by a shift in the origin.

For the same reason Φ is unchanged by the replacement G → G(R), and therefore

0 = δΦ = ΣδG = Σ∇G · δR implies

(76)

∫

d1′ [Σ(1, 1′)∇1G(1′, 1) + Σ(1′, 1)∇1G(1, 1′)] = 0.

If we now apply the operator 1
2 [∇1

i
+ A(1)− ∇1′

i
+ A(1′)] to Eq. (49), take 1′ = 1+, and

integrate over x1 we obtain using Eq.(76) (the details are somewhat tedious)

(77)
d

dt
〈 ˆP(t)〉 = −

∫

dx1 {〈n̂(1)〉E(1) + 〈j(1)〉 × B} .

where the electric field is E(1) = −∇1v(1)−∂A/∂t and the magnetic field is B = ∇×A.

The quantity P(t) is the total momentum given by 〈P(t1)〉 =
∫

dx1〈j(1)〉. We therefore

obtain the result that Φ-derivable approximations obey the momentum conservation law

Eq.(77). In a similar manner we can also derive the energy and angular momentum

conservation laws by considering how the Green function and the Φ-functional transform

under time-translations and rotations. The main steps can be found in Refs. [16, 4]

3. – Time-dependent density-functional theory

3
.
1. The Sham-Schlüter equation. – We now make a connection with time-dependent

density functional theory [22, 23]. Let us first consider a noninteracting system. To

this noninteracting system there corresponds a Green function Gs with the equations of

motion

(i∂t1 − hs(1))Gs(1, 2) = δ(1, 2)(78)

(−i∂t2 − h∗s(2))Gs(1, 2) = δ(1, 2)(79)

At t = t0 the system is in its ground state. The system is then described by one-particle

orbitals that satisfy.

(80) hs(xt0)ϕj(x) = εjϕj(x)

On the imaginary part of the contour where the Hamiltonian is time-independent the

orbitals are given by φi(xt) = ϕi(x) exp (−iεi(t− t0)). For real times we define the

orbitals to be the solution of

(81) (i∂t − hs(xt))φj(xt) = 0
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with boundary condition φi(xt0) = ϕi(x). If we further define nj = (eβεj + 1)−1 then

the Green function

(82) Gs(1, 2) = −iθ(t1, t2)
∑

j

φj(1)φ
∗
j (2)(1 − nj) + iθ(t2, t1)

∑

j

φj(1)φ
∗
j (2)nj

satisfies the equations of motion Eq.(78) and Eq.(79), with the boundary conditions

Gs(x1t0 − iβ, 2) = −Gs(x1t0, 2)(83)

Gs(1,x2t0 − iβ) = −Gs(1,x2t0).(84)

Let us consider the case that we have no vector potentials and let hs be of the form

(85) hs(xt) = −
∇2

2
+ vs(xt)

where vs is a local potential. In the following we will split vs as follows

(86) vs(1) = v(1) + vH(1) + vxc(1)

which defines the exchange-correlation potential vxc. Then

(87) G(1, 1′) = Gs(1, 1
′) +

∫

d2d3Gs(1, 2)[Σ(2, 3) − δ(2, 3)vxc(2)]G(3, 1′)

is a solution of Eq.(32) with similar boundary conditions as in Eqs.(83) and Eq.(84)

(remember that M = Σ + vH). We note that for more general initial conditions extra

terms will appear in the self-energy that take into account these initial correlations [2,

3]. We now require that the noninteracting system will have the same density as the

interacting one. We therefore require n(1) = −iG(1, 1+) = −iGs(1, 1
+) which together

with Eq.(87) leads to the following integral equation for vxc:

(88)

∫

d2Gs(1, 2)G(2, 1)vxc(2) =

∫

d2d3Gs(1, 2)Σ(2, 3)G(3, 1).

This equation is known as the time-dependent Sham-Schlüter equation [25]. As shown by

Runge and Gross [26] vxc is a functional of the density and the initial state of the system.

If an approximate form of this functional vxc[n] is given the one-particle equations Eq.(81)

can be solved self-consistently. These equations are known as the Kohn-Sham equations

of time-dependent density functional theory and the noninteracting system with the same

density as the true system is known as the Kohn-Sham system [24]. Suppose now that Σ

is a Φ-derivable approximation. Then the momentum calculated from the Green function

satisfies Eq.(77), i.e.

(89) ∂t1〈P(t1)〉 = ∂t1

∫

dx1 〈j(1)〉 = −

∫

dx1 n(1)∇v(1).
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Now with the help of the continuity equation (50) the momentum can also be written as

P(t) =
∫

dx r ∂tn(xt). Since the Kohn-Sham system also has density n(1) and obeys the

same conservation law with v replaced by vs we can readily derive that

(90)

∫

dx1n(1)∇1vxc(1) = 0.

We have therefore proved the result that an exchange-correlation potential obtained from

a Φ-derivable Σ in Eq.(88) does not apply a force to the system. If we take the functional

derivative of this equation with respect to the density we obtain

(91)

∫

d1 fxc(1, 2)∇1n(1) = ∇2vxc(2).

where we defined the exchange-correlation kernel fxc(1, 2) = δvxc(1)/δn(2) that plays an

important role in density-functional response theory [28]. The latter equation can also be

derived in a different way. Eq.(87) can along the lines described above also be derived for

an observer in a moving frame with position vector R(t). The transformation property

Eq.(75) of the Green function together with Eq.(88) then leads to

(92) vxc([n(r + R(t))]; rt) = vxc([n(rt)]; r + R(t), t).

The importance of this relation has been stressed by Vignale who also showed that it

implies the so-called harmonic potential theorem [27]. Expansion of Eq.(92) in R again

leads to Eq.(91) [27].

Let us now look at some approximate solutions of Eq.(87). A first iteration of Eq.(87)

leads to

(93) G̃(1, 1′) = Gs(1, 1
′) +

∫

d2d3Gs(1, 2)[Σ[Gs](2, 3) − δ(2, 3)vxc(2)]Gs(3, 1
′).

It is important to note that the Green function G̃ for a Φ-derivable Σ = δΦ[Gs]/δGs

where Σ is expressed in terms of Gs rather than G, also satisfies all conservation laws.

This follows simply because G and Gs behave similarly under the transformations that

we considered and all our previous derivations can be repeated. The Sham-Schlüter

equation corresponding to Eq.(93) is given by

(94)

∫

d2Gs(1, 2)Gs(2, 1)vxc(2) =

∫

d2d3Gs(1, 2)Σ[Gs](2, 3)Gs(3, 1).

In the simplest approximation, Σ is given by the exchange-only self-energy of Eq.(35),

(95) Σx(1, 2) = −
∑

j

njφj(1)φ
∗
j (2)w(1, 2)
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where nj is the occupation number. This approximation leads to what is known as the

time-dependent effective potential (TDOEP) equations [29, 30, 31] in the exchange-only

approximation. Since the exchange self-energy Σx is local in time, there is only one

time-integration in Eq. (94). The x-only solution for the potential will be denoted vx.

With the notation Σ̃(3, 4) = Σx(x3t3,x4t3)− δ(x3 −x4)vx(x3t3) we obtain from Eq.(94)

0 = i

∫ t1

t0

dt3

∫

dx3dx4

[

G<
s (1, 3)Σ̃(3, 4)G>

s (4, 1) − G>
s (1, 3)Σ̃(3, 4)G<

s (4, 1)
]

+i

∫ t0−iβ

t0

dt3

∫

dx3dx4G
<
s (1, 3)Σ̃(3, 4)G>

s (4, 1).(96)

Let us first work out the last term which describes a time-integral from t0 to t0 − iβ.

On this part of the contour we have φi(x, t) = φi(x, t0) exp (−iεi(t− t0)) and since Σx is

time-independent on this part of the contour, we can integrate

i

∫ t0−iβ

t0

dt3G
<
s (1, 3)G>

s (x4t3, 1) =

∑

i,k

ni(1 − nk)φi(1)φ
∗
i (x3, t0)φk(x4, t0)φ

∗
k(1)

eβ(εi−εk) − 1

εi − εk
(97)

If we then use ni(1 − nk)(eβ(εi−εk) − 1) = nk − ni and define the function ux,j by

(98) ux,j(1) = −
1

φ∗j (1)

∑

k

nk

∫

d2φ∗j (2)φk(2)φ∗k(1)w(1, 2)

we obtain from Eq.(97) and Eq.(95)

i

∫ t0−iβ

t0

dt3

∫

dx3dx4G
<
s (1, 3)Σ̃(3, 4)G>

s (4, 1)

= −

∫

dx2

∑

j

nj

∑

k 6=j

φ∗j (x2t0)φk(x2t0)

εj − εk
φj(1)φ

∗
k(1) [ux,j(x2t0) − vx(x2t0)] + c.c.(99)

The integral along the real axis on the lhs of Eq. (96) can similarly be evaluated. Col-

lecting our results we obtain the OEP equations on the same form as in Ref. [31],

0 = i
∑

j

∑

k 6=j

nj

∫ t1

t0

dt2

∫

dx2 [vx(2) − ux,j(2)]φj(1)φ
∗
j (2)φ

∗
k(1)φk(2) + c.c.

+
∑

j

∑

k 6=j

nj

φj(1)φ
∗
k(1)

εj − εk

∫

dx2 φ
∗
j (x2, t0) [vx(x2t0) − ux,j(x2t0)]φk(x2, t0).(100)

Since the exchange-only self-energy Σx is Φ-derivable with respect to Gs, the potential

vx obtained from a solution of Eq.(100) will satisfy the zero-force constraint (90). The
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OEP-equations (100) in the so-called KLI-approximation have been succesfully used by

Ullrich et al.[30] to calculate properties of atoms in strong laser fields.

We finally note that one can readily extend our derivation to the case that we also

have a vector potential present. In that case one obtains a similar TDOEP equation for

the exchange-correlation part of the vector potential [32] which is a basic ingredient in

current-density-functional theory [33, 34].

4. – Summary

We have given an overview of the Φ-formalism of Baym in connection with the Keldysh

or time-contour Green function technique that describes nonequilibrium phenomena. We

showed how Φ-derivability leads to satisfaction of conservation laws and that the Ward

identities lead to gauge invariance conditions on the response functions and satisfaction of

the f -sum rule. We further showed how the time-dependent exchange-correlation poten-

tial of time-dependent density-functional theory can be calculated from Green function

techniques in such a way that this potential also satisfies important constraints that are

enforced by the conservation laws. As an example we derived the exchange-only TDOEP

equations. Much more on the relation between TDDFT and Green function techniques

and on conserving approximations can be said but will be devoted to future publications.

Appendix A.

The frequency sum rule

Let us define the spectral function A by

(A.1) A(r1, r2; t1 − t2) = χ>
00(1, 2) − χ<

00(1, 2).

Eq.(70) is then equivalent to

(A.2) ∂tA(r1, r2; t)|t=0 = −
∑

µ

∇2,µ∇1,µ(n0(r2)δ(r1 − r2)).

We will for convenience suppress the spatial indices. From Eq.(65) we further see that
A(t = 0) = 0. The Fourier transform of A and its inverse are given by

(A.3) Ã(ω) =

∫

dtA(t)eiωt A(t) =

∫

dω

2π
Ã(ω)e−iωt.

From the second of these equations we immediately see that

(A.4) A(t = 0) =
1

2π

∫

dω Ã(ω) ∂tA(t)|t=0 =
−i

2π

∫

dω ωÃ(ω).
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Now the Fourier transform of χ00,R(t) is given by

(A.5) χ̃00,R(ω) =

∫

dt θ(t)A(t)eiωt

If we use the following representation of the theta-function

(A.6) θ(t) = lim
η→0

−1

2πi

∫

du
e−iut

u+ iη

where η is positive, we can write

(A.7) χ̃00,R(ω) = lim
η→0

−1

2πi

∫

dt

∫

dv
eivtA(t)

ω − v + iη

From this equation we see that for large ω.

(A.8) χ̃00,R(ω) =
−1

2πi

(

1

ω

∫

dvÃ(v) +
1

ω2

∫

dv vÃ(v) +O(1/ω3)

)

However since A(t = 0) = 0 we obtain from Eq.(A.4) the following large frequency
behavior for χ̃00,R

(A.9) χ̃00,R(ω) = −
∂tA(t)|t=0

ω2
+O(1/ω3)

Since χ00,R is causal, it is analytic in the upper half of the complex frequency plane and
therefore a contour integral in the upper half plane will yield zero. If we let C be a
semicircle in the upper half plane we find using Eq.(A.9)

(A.10) 0 =

∫

C

dω ωχ̃00,R(ω) = −iπ∂tA(t)|t=0 +

∫ +∞

−∞

dω ωχ̃00,R(ω)

We therefore obtain

(A.11)

∫ +∞

−∞

dωωχ̃00,R(ω) = iπ∂tA(t)|t=0 = −iπ
∑

µ

∇2,µ∇1,µ(n0(r2)δ(r1 − r2))
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