
598SCM Fall 2004 Homework 4

Handed out Tuesday, November 16, 2004
Due Tuesday, December 7, 2004

There will be an ”Office hour” session before the due date. Anyone is welcome to come
to discuss the solutions to the problems. Time to be announced.

1. Properties of the self energy

In this problem you are asked to describe the form of the Greens function Gλ(E) near
a resonance E = ελ where there is some broadening due to many-body effects. (Here
λ is a label that denotes a conserved quantum number, e.g., k in a crystal. It is just
a label and does not affect the solution.) Note that solution of this problem requires
only simple algebraic manipulation of the terms. It does NOT require and knowledge
of the details of the self-energy.

Use the general expression for the Green’s function in terms of the proper self-energy

Gλ(E) =
1

E − ε0λ − Σ?
λ(E)

(1)

and expand the self-energy Σ?
λ(E) in powers of the energy difference E − ελ. From

this show that near E = ελ the Greens function is approximated by

Gλ(E) =
Zλ

E − ελ − iγλ
, (2)

where
ελ = ε0λ + ReΣ?

λ(E = ελ), (3)

Zλ =
[
1− d ReΣ?

λ(E)
dE

]−1

E=ελ

, (4)

and
γλ = ZλImΣ?

λ(E = ελ) (5)

The consequence of this result is that the “quasiparticle” with quantum number λ has
a broadened peak (width given by Eq. 5) centered at a shifted energy (Eq. 3) , with
a reduced total weight in the peak (the factor Zλ in Eq. 4).

2. Exact solution for the two site Hubbard dimer.

The two-site Hubbard dimer is a model for a molecule with two sites 1 and 2. Each
site has one basis state, e.g. an H atom in which we consider only the 1s state. The
molecule may have 0,1,2,3, or 4 electrons. There is a hopping term t between sites
and interaction term on each site giving the Hamiltonian:

H = t
∑
σ

(c+
1σc2σ + c+

2σc1σ) + U(n1↑n1↓ + n2↑n2↓) (6)

Give the exact solution for all possible cases. The solutions for 0 and 1 electrons are
very straightforward. Show that the solution for 4 and 3 electrons are equivalent to 0
and 1 electrons (an example of particle-hole duality).
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For two electrons, the solution can be found exactly with nothing harder than solving
a 2x2 matrix equation. Show that for two electrons the lowest state is always a singlet.

Show that for two electrons and small U (U << t) one has the usual bonding and
antibonding states, like is appropriate for hydrogen at the equilibrium distance. For
two electrons large U (U >> t)the system is more like a spin system with total spin
equal zero and antiferromagnetic correlation of the spins.

3. Anderson Impurity Model in the Hartree Fock Approximation

The object of this problem is to carry out the unrestricted Hartree-Fock approximate
solution of the Anderson Model for impurities in a metal. The primary result will
be to find the ranges of parameters where the solution is a) a singlet state with no
magnetic moment and b) a degenerate pair of states each with a moment. The letter
case is called the ”local moment regime”. The best reference is the original paper
(P. W. Anderson, Phys. Rev. 124, 41 (1961).) In this local moment regime in fact
the true ground state is a singlet; this is the famous Kondo problem that was finally
solved by Wilson using the renormalization group methods which he invented.

The Hamiltonian is given by

H =
∑
σ

εLc+
L,σcL,σ + UnL,↑nL,↓ +

∑

k,σ

εkc
+
k,σck,σ + V

∑

k,σ

(
c+
k,σcL,σ + h.c.

)
(7)

For the non-interacting (U = 0) case you may may use the form of the Green’s function
(retarded form) derived in the class notes for a ”flat” density of states (the real part
of the self energy is zero in this case because the spectrum is symmetric from - infinity
to plus infinity).

Gσ((L,L, ω) =
1

ω − εL + i∆
(8)

where ∆ = constant and εL is assumed to include any shift from the real part of the
self-energy.

In the H-F approximation, the Greens function for each spin is given by the above
equation with

εL → εL,σ = εL + U〈nL,−σ〉. (9)

a) Show that in the H-F approximation the number of localized electrons of each spin
type is given by

nL,σ =
∫ EF

−∞
dEρL,σ(E) =

1
π

cot−1
(

εL + U〈nL,−σ −EF

∆

)
(10)

b) In terms of the variables x = EF−εL
U , y = U

∆ , n1 = nL↑ and n2 = nL↓, show that
the equations can be written:

cotn1 − y(n2 − x) = 0

cotπn2 − y(n1 − x) = 0.

c) Show graphically that for some values of x and y there is only one non-magnetic
solution with n1 = n2, whereas for other values of x and y, there are three solutions.
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Show this by graphing n2 as a function of n1 from the first equation and n1 as a
function of n2 from the second equation. Plot the solutions for n2 vs. n1 and show
examples of the two types of solutions.

d) Show that the boundary between the non-magnetic and magnetic regimes is given
by the condition that the two curves have the same slope at the point n1 = n2, and
that this leads to the relation of critical values of nc and yc given by

π
sin2πnc

= yc.

e) Show qualitatively that the boundary of the magnetic regime has the form found
by Anderson:

Optional Problems

4. Divergence of individual terms in expansion of correlation energy in powers of e2 for
the homogeneous electron gas.

Consider the direct term in the expansion of the correlation energy to the lowest order
beyond Hartree-Fock in Jellium. The Hartree-Fock wavefunction is the filled Fermi
sea and the energy is first order in the interaction. In the next order one has sums
over all excited states generated by the interaction

Hint =
1
2

∑

k,σ,k′,σ′,q
Vq

(
c+
k+q,σc+

k′−q,σ′ck′,σ′ck,σ

)
(11)

where Vq is the Coulomb interaction in Fourier space. Give the standard second order
perturbation expression for the energy to second order in Vq ≈ e2, and identify the
direct and the exchange terms. Consider the direct term and show that it diverges.
(This is sufficient to show that the perturbation series formally does not converge,
which is the reason that the series must be resummed in a different way to get a finite
expression.
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