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598SCM Fall 2004 Lecture 23

Localized Models for Interacting Electrons
See for example Aschroft & Mermin, Ch. 32; Mahan Ch. 1; Jones & March vol. 1, p

341 ff; Review by Imada, et al.

• Hubbard Model and Mott metal-insulator transition

Described in a set of papers by J. Hubbard, Proc. Roy. Soc. A276, 238 (1963);
A281, 401 (1964); A285, 542 (1964). (Also independent papers at the same time by
Gutzwiller and by Kanimori.)

The central model in present theories of Hi-Tc superconductors: Hubbard Model on
2-d square lattice. (P. W. Anderson, Science 256, 1526 (1992); E. Fradkin, ”Field
Theories of Condensed Matter Systems”, Ch. 2 and following.)

One-band Hubbard Hamiltonian:

H =
∑

ijσ

tijc
+
iσcjσ +

1
2
U

∑

iσ

niσni−σ (1)

where i, j label the sites in the lattice. The electrons are assumed to be restricted to
one band which is not degenerate except for spin. The interaction U is only between
electrons on the same site. The ”hopping” terms tij give dispersion to the electron
states. The simplest model assumes the t′s are zero except for nearest neighbor
hopping terms.

A. Soluble in four cases:

1. The non-interacting case U = 0

2. The ferromagnetic state with all spins parallel

3. Small systems (1, 2, 3 , ... sites) For example, the one-site atomic limit is just
tij = 0.

4. Exact solution by Leib and Wu in 1 dimension using ”Bethe Ansatz” (special
method that works in 1D only - idea for project)

B. Exact solution for 2 sites (Exercise in homework.)

Illustrates key features of the solution as a function of U

Small U - described by perturbation theory in U about the U = 0 soltution
Large U - described by perturbation theory in t2/U – but note that the model is
degenerate for t2/U = 0 – an indication of the special features of strongly correlated
systems.

C. Hartree-Fock Approximate Solutions

Non-magnetic Band solution vs. Ferromagnetic solution

Basic idea - transition from band metal to magnetic insulator, but wrong in many
ways

Example of two site model in Hartree-Fock approximation
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D. Mott metal-insulator transition

Transition as a function of the magnitude of the interaction.

Transition as a function of ”doping” or band-filling.

• Heisenberg Spin Model - low energy magnetic excitations of system with
localized moments

Low energy excitations in the magnetic limit of the Hubbard model; i.e., U >> t limit
where the spins on each site which are coupled because of small hopping t, leading to
spin excitations described by

H =
∑

ij

Jij
~Si · ~Sj (2)

where the J’s are exchange constants and ~Si is a spin vector on lattice site i.

Example of 1 electron per site, with U >> t. Illustrated by two-site example. Gener-
alizable to higher spins.

• Anderson Impurity Model and the Kondo Effect: Effects of localized mag-
netic moments Metals:

See for example Mahan p. 57-59, 977 ff; Doniach p 186 ff; Harrison Cp. V, Sect. 7;
P. W. Anderson, Phys. Rev. 124, 41 (1961).

1. Impurity in metal with no electron-electron interactions

A. Resistance due to scattering

Treat as scattering due to localized potential in isotropic medium. Same as well-
known quantum mechanical expressions for scattering in vacuum in terms of phase
shifts δl(E) for angular momentum l. (See Ziman; Mahan, p. 249; Doniach, 81 ff)

Crosssection σ for scattering of plane wave at energy E

σ(E) =
4π

k2

∑

l

(2l + 1)sin2(δl(E)) (3)

which leads to resistivity. Note that the maximum possible resistivity in an angular
momentum channel is given by the “unitarity limit” sin(δl) = 1 or δl = ±π

2 .

B. Friedel Sum Rule

For an impurity of charge ∆Z (relative to the host metal, i.e., the number of added
protons on impurity) one can prove that the sum of accumulated extra electrons
around impurity (which is Z by charge neutrality) is directly related to phase shift at
the Fermi energy:

∆Z =
1
π

∑

l,m,σ

δl,m,σ(EFermi) (4)



598SCM F 2004 Lecture 23 3

Proved by Friedel for non-interacting electrons. Formal proof by Dewitt, Phys. Rev
103, 1565 (1956).

Consequences: there is a direct relation of resistance of impurity to charge. With some
simplifications it provides very useful rules. In particular if we assume scattering is
restricted to only l = 0 and is spin independent, then the sum rule is simply

δ0 =
π

2
∆Z (5)

i.e., the resistance is given by the charge. If ∆Z is odd, maximum resistance; if
∆Z is even no resistance! This is actually a good approximation for an impurity in
simple metals. This is because scattering is large only for small angular momenta if
the impurity potential is short range, since higher l > 0 have small amplitude at the
impurity site.

2. Anderson Impurity Model

Described in P. W. Anderson, Phys. Rev. 124, 41 (1961) and many texts.

Simplest model with the key effects. Assume electrons interact on the impurity site
(like a Hubbard Model on this one site) but that they are non-interacting on all other
sites in the surrounding metal. An example would be a transition metal impurity
(strong e-e interactions for electrons in the 3d state) in a metal like Cu where the
electrons have only weak interactions. The Anderson impurity hamiltonian is

H = Hband + Himpurity + Hhybridization

=
∑

kσ

εkc
+
kσckσ + εLc+

LσcLσ + UnL↑nL↓ +
∑

kσ

VkL[c+
kσcLσ + c+

Lσckσ] (6)

A. Solution for U = 0 in terms of Greens Functions (Mahan 272 ff; Doniach
176 ff) Leads to coupled equations:

(ω − εL)GLLσ(ω) = 1 +
∑

kσ

VkLGkLσ(ω)

(ω − εk)GkLσ(ω) = 0 +
∑

kσ

VkLGLLσ(ω) (7)

which leads to

GLLσ(ω) =
1

ω − εL − Σ∗σ(ω)
(8)

with

Σ∗(ω) =
∑

k

V 2
kL

ω − εk + iη
(9)

which is independent of σ and is here given for the retarded form.
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Now we can find Σ∗(ω) explicitly in simple cases. If we assume VkL = V (as Anderson
did) then

ImΣ∗(ω) = −πV 2ρ0(ω) ≡ −∆(ω) (10)

where ρ0(ω) is the unperturbed density of states of in the metal.

Now the added density of states due to the impurity is

ρLσ(ω) = − 1
π

ImGLLσ(ω) =
1
π

∆(ω)
(ω − εL −ReΣ∗σ(ω))2 + ∆2(ω)

(11)

Finally if we approximate the metal density of states as constant (usually good ap-
proximation for energies near EF ) this leads to ∆(ω) = ∆ and a Lorentzian shape
for density of states. This is a ”resonant level” in the continuum with maximum
scattering at the resonance at ω = εL −ReΣ∗σ(ω).

B. Relation to the phase shift

The change in the density of states of the system (for each spin) is given by

δρ(E) =
1
π

dδ0(E)
dE

, (12)

where δ0(E) is the phase shift at energy E. This leads to

∫ E

−∞
dEρ(E) =

1
π

δ0(E), (13)

If we choose E = EF this leads to a different version of the Friedel sum rule, relating
the integrated number of added electrons to the phase shift.

Result: Maximum scattering for the ”magnetic” case where there is one extra electron,
∆Z = 1.

3. Anderson’s Hartree-Fock Solution for U 6= 0

You are asked in a homework problem to verify Anderson’s solution for the case of
Z = 1 that if U exceeds a critical value, then the Hartree-Fock solution has a broken
symmetry (unrestricted Hartree-Fock) with different energies for up and down spins.

4. Relation of Anderson Impurity Problem and Kondo Effect

For the strongly magnetic case, the H-F solution is a degenerate ground state (spin
↑ and ↓) with very little effect at the Fermi energy (just the tail of the Lorentzian).
This is the formation of a ”localized magnetic moment”.

But the mean-field broken-symmetry H-F solution misses a key point. The spin is still
coupled to the electrons in the metal which have low energy excitations (arbitrarily
low energy near the Fermi energy). No matter how small is the coupling it is sufficient
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to couple the low energy metal excitations and the zero-energy spin excitation of the
localized spin, to form a qualitatively new state. There is still the maximum
possible scattering at the Fermi energy at T = 0 At higher T the effect
goes away. This is the Kondo effect.

5. Kondo Effect

Increase of resistance at low T.

Solved by K. G. Wilson, for which he got the Nobel prize.

The characteristic Kondo Temperature can be very low, which leads to enormous
effects (per impurity) at low temperatures.

• Anderson Lattice Model

The Anderson lattice model is a generalization of impurity case, to a lattice with
strong interactions in a state on each site. There is also a sate on each site with
no electron interactions. This defines a two-band Hubbard model with one wide
band with no Coulomb interactions which hybridizes with a narrow band that has
a Coulomb interaction. In the ”local moment” magnetic case, this leads to spins on
each site coupled to band electrons; Kondo-like effects; ”Heavy Fermion” systems.

• Possible Projects

There are several suggested projects associated with this problem. 1. The reason why
the Friedel sum rule still holds in the interacting system. 1a. The relation of the
Friedel sum rule for an impurity to the Luttinger sum rule on the volume enclosed by
the Fermi surface in a crystalline metal. 2. The nature of the Kondo effect. 3. The
Schrieffer-Wolfe transformation of the Anderson model with large U, to the Kondo
model in which the low energy excitations are the electrons near the Fermi energy, and
the localized spin. 4. The analytic solution of this problem in the large degeneracy
case. 5. The Anderson lattice model, which is a generalization of the impurity case,
which leads to a lattice problem related to the Kondo problem. In the ”local moment”
magnetic case, this leads to spins on each site coupled to band electrons; Kondo-like
effects; ”Heavy Fermion” systems. 6. Other possible ideas related to this problem.

Dynamical mean field theory (next lectures) maps lattice problems (like the Hubbard
model) onto self-consistent single-site problems much like the impurity problem, but
with the requirement that the surrounding medium be consistent with the properties
of the central site. Good recent references by G. Kotliar and co-workers.


