Week 1: Orientation, Reading Assignment, Homework Assignment

Lecturer: Prof. Steven Errede

Email: serrede@illinois.edu

Office: 435 Loomis (4th floor, SW corner)

Office Phone: 333-0074. HEP Sec'ys: 441 Loomis (333-4452)

Office Hours: Anytime

Course Website: http://courses.physics.illinois.edu/phys598aem/

All lecture notes, homework, demos, references, etc. are available on the P598AEM website. Please spend some time checking these out!

Course Organization:

A. Lectures: Tuesday & Thursday, 12:30-1:50 pm, in 136 Loomis.

B. Weekly Reading and Homework Assignments: HW due following Thursday, in class.

C. Take-Home Midterm Exam: Oct. 10th, due Oct. 17th (in lieu of P598AEM HW 7). D. Take-Home Final Exam: Dec. 10th, due Dec. 17th.

Assignment For Week 1: Please read/work through P598AEM Lect. Notes 1, 2 & 3 Reading

Homework Assignment For Week 1: See/do HW # 1 problems on following pages.

Final P598AEM grade based on:

ΣHW's: 60% MT: 10% FE: 30%

Physics 598AEM Week 1 Homework Assignment

A random variable x could obey one of the Probability Distribution Functions (P.D.F.) f(x) listed below. Analytically calculate the expectation value/mean $E[x] = \hat{x} = \mu$, variance σ_x^2 and standard deviation σ_x of the following P.D.F's; determine the normalization constant c in each case such that $\int_a^b f(x) dx = 1$ is satisfied. Make a graph of each P.D.F. and plot the mean and $\pm \sigma$ about the mean.

- 1.) $f(x) = c \sin x$ on the interval $0 \le x < \pi$.
- 2.) $f(x) = c \cos x$ on the interval $-\pi/2 \le x < +\pi/2$.
- 3.) $f(x) = c |\cos x|$ on the interval $0 \le x < \pi$. Is the standard deviation in this case the same as 1.) or 2.) above? Please comment (briefly)....
- 4.) f(x) = c on the interval $a \le x < b$, i.e. the uniform/flat distribution U(a,b).

5.)
$$f(x) = \begin{cases} cx & \text{for } 0 \le x < \frac{1}{2} \\ c(1-x) & \text{for } \frac{1}{2} \le x < 1 \end{cases}$$

- 6.) $f(x) = c \sin^2 x$ on the interval $0 \le x < \pi$.
- 7.) $f(x) = c \cos^2 x$ on the interval $-\pi/2 \le x < +\pi/2$.
- 8.) $f(x) = c \cos^2 x$ on the interval $0 \le x < \pi$.
- 9.) $f(x) = \begin{cases} cx^2 & \text{for } 0 \le x < \frac{1}{2} \\ c(1-x)^2 & \text{for } \frac{1}{2} \le x < 1 \end{cases}$