Week 3: Reading Assignment, Homework Assignment

Lecturer: Prof. Steven Errede

Email: serrede@illinois.edu

Office: 435 Loomis (4th floor, SW corner)

Office Phone: 333-0074. HEP Sec'ys: 441 Loomis (333-4452)

Office Hours: Anytime

Course Website: http://courses.physics.illinois.edu/phys598aem/

All lecture notes, homework, demos, references, etc. are available on the P598AEM website. Please spend some time checking these out!

Course Organization:

A. Lectures: Tuesday & Thursday, 12:30-1:50 pm, in 136 Loomis.

B. Weekly Reading and Homework Assignments: HW due following Thursday, in class.

C. Take-Home Midterm Exam: Oct. 10th, due Oct. 17th (in lieu of P598AEM HW 7). D. Take-Home Final Exam: Dec. 10th, due Dec. 17th.

Assignment For Week 3: Please read/work through P598AEM Lect. Notes 6. Reading Homework Assignment For Week 3: See/do HW # 3 problems on following pages.

Physics 598AEM Week 3 Homework Assignment

Use *matrix calc*. info in P598AEM Lect. Notes 6 to help you do the following HW problems.

1a.) Calculate the *variance* $\sigma_{A_{FB}}^2 \equiv \underline{\hat{V}}_{A_{FB}} \equiv \underline{\hat{D}}_{A_{FB}/x} \underline{\hat{V}}_x \underline{\hat{D}}_{A_{FB}/x}^T \{n.b. \text{ a } scalar \text{ quantity } -1 \times 1 \text{ matrix } \}$ and hence the uncertainty $\sigma_{A_{FB}}$ on the forward-backward asymmetry A_{FB} associated with (an arbitrary) angular distribution of particles (e.g. μ^+ in $Z^0 \to \mu^+ \mu^-$ production/decay): $A_{FB} \equiv (F - B)/(F + B) \equiv D/N$ where F = # of events with μ^+ in the forward hemisphere, B = # of events with μ^+ in the backward hemisphere, N = F + B = total # of $Z^0 \to \mu^+ \mu^-$ events and D = F - B. Assume that F and B are *independent* random variables ($\Rightarrow n.b. N$ is **not** fixed/constant here!), and that the individual *variances* $\sigma_F^2 = F$ and $\sigma_B^2 = B$.

b.) Show that $\sigma_{A_{FB}} = \frac{1}{\sqrt{N}} \sqrt{1 - A_{FB}^2}$. Hint: use the relations $\sigma_F^2 = F$, $\sigma_B^2 = B$, N = F + B and $A_{FB} \equiv (F-B)/(F+B)$ in your expression for $\sigma_{A_{FB}}^2$. Then make a plot of $\sqrt{N} \cdot \sigma_{A_{FB}}$ vs. A_{FB} where $-1 \le A_{FB} \le +1$. Briefly discuss what's going on in this plot.

c.) Since N = F + B and D = F - B, thus: g(N, D) dN dD = f(F, B) dF dB $\Rightarrow g(N,D) = f(F,B)/|J(N,D/F,B)|$. Obtain the elements of the *covariance* matrix

$$\hat{V}(N,D) = \underline{\hat{D}}_{N,D/F,B} \, \underline{\hat{V}}(F,B) \, \underline{\hat{D}}_{N,D/F,B}^{T} = \begin{pmatrix} \sigma_{N}^{2} & \operatorname{cov}(N,D) \\ \operatorname{cov}(N,D) & \sigma_{D}^{2} \end{pmatrix} = \begin{pmatrix} \sigma_{N}^{2} & \sigma_{N}\sigma_{D}\rho(N,D) \\ \sigma_{N}\sigma_{D}\rho(N,D) & \sigma_{D}^{2} \end{pmatrix}$$

- d.) Show that the *covariance* matrix $\hat{V}(N,D)$ can be written as: $\hat{V}(N,D) = N \begin{pmatrix} 1 & A_{FB} \\ A_{FB} & 1 \end{pmatrix}$. Briefly discuss the nature of correlations and/or anti-correlations between N = F + B and D = F B when $A_{FB} \approx -1.0, -0.5, 0.0, +0.5, +1.0$.
- 2.) Obtain the *covariance* matrix $\hat{V}(r,\theta)$ associated with the change of independent random variables (x,y) to their polar coordinate variables (r,θ) via $r^2 = x^2 + y^2$ and $\tan \theta = y/x$. Assume that the *variance* matrix $\hat{V}(x,y)$ is given, *i.e.* σ_x^2 and σ_y^2 are known/specified. Draw a 2-D picture of an ellipse centered at $(+x_0, +y_0)$. Briefly discuss the conditions for which the covariance between r and θ will be positive, zero, or negative, *i.e.* discuss the behavior of the correlation coefficient $\rho(r,\theta)$ for the three cases $\sigma_x < \sigma_y$, $\sigma_x = \sigma_y$ and $\sigma_x > \sigma_y$. For the special case of $\rho(r,\theta) = 0$, briefly discuss how σ_r and σ_θ are affected by increasing r from its \hat{r} value, $\hat{r} \equiv \sqrt{x_0^2 + y_0^2}$.